Page 1

ECE 413: Intro to VLSI

Assignment 5: Two-Bit Full Adder Design

Roderick Renwick

DEARBORN

November 20, 2019
Fall 2019

Honor Code:

I have neither given nor received unauthorized assistance on this graded report.

X Roderick_Renwick

Page 2

Table of Contents

Table of Contents 2
Introduction 3
Design: One-Bit-Full-Adder 4
Design: NAND Gate 6
Design: XOR Gate 7
Design: INV Gate 8
Design: Two-Bit-Full-Adder 9
Implementation & Simulation 10
L-Edit Results 15
DRC Verification 17

Conclusion 18

Page 3

Introduction

The following laboratory procedure lays out the construction of a two-bit full adder and its transistor

layout composed of CMOS inverters that are grouped into NAND and XOR logic gates.

Page 4

Design: One-Bit-Full-Adder

To realize a two-bit-full-adder, the one-bit-full-adder must be designed first. The following figures
provide the truth table, optimized kmap functions, and logic-gate layout for a one-bit-full-adder:

4

One-Bit-Full-Adder Boolean Algebra Optimization

One-Bit-Full-Adder Logic-Gate Design

Page 5

Candidate Layout for One-Bit Adder Desgin

Page 6

Design: NAND Gate

The truth table, optimized functions, circuit design, and transistor-level layout for a two-input NAND gate

are as follows:

Page 7

Design: XOR Gate

The truth table, optimized functions, circuit design, and transistor-level layout for a two-input XOR gate

are as follows:

Page 8

Design: INV Gate

The truth table, optimized functions, circuit design, and transistor-level layout for an Inverter gate is as

follows (note that this is done for both inputs A, and B):

Page 9

Design: Two-Bit-Full-Adder

Following the design and layout of transistors to construct a NAND gate, Inverter Gate, and an XOR gate,
required to realize a one-bit-full-adder, a two-bit-full-adder may then be implemented by connecting two
one-bit-full-adders together. This is done by taking the carr-out of the first adder and feeding it into the
carry-in of the second adder, while at the same time feeding the compliments of the A and B inputs into

the second adder. The design and truth table for the two-bit-full-adder are as follows:

Page 10

Implementation & Simulation

The following figures show the logical simulation of the two-bit-full-adder through valvalo software to

verify and validate the design implementation:

library IEEE;

152 JEEE.STD LOGIC 1164.ALL;

library UNISIM;
1se UNISIM.VComponants,al

entity nand2 is
port
. 1 : in std_logic;
oul std logic

architecture behaviour of nand2 is

0 < not { 10 and i1);
end behaviour;:

library IEEE;

1se IEEE.STD_LOGIC_1164.ALL;

library UNISIM;
15 UNISIM.VComponents.all;
entity xord i
port {

’ LT std_lcqic;
: out std logic

architecture behaviour of xor? is

o <=not (({ mot {((not (10 and 11)) and 10 } } and (not { not { 10 and 11)})} and il } };

end behaviour

library IEEE;

152 [EEE.STD _LOGIC 1164.ALL;

library UNISIM;
use UNISIM.W

components.all;

entity one bit addr is
Port |
in STD LOGIC;
in STD_LOGIC;
i1 S'I'D_LCIGIC,‘.
mt STD_LOGIC;
ut STD _LOGIC
)i

end one bit addr;

end struct;

architecture struct of one bit addr is
omponent nand?2
port (
B in std logic;
it std_]_o;ic:
1
nd component;
component Xorz
port (
, 1 : in std legie;
ut = td_logIc
1
nd component
signal xol : std logic;
signal nand0 : std legic;
signal nandl : std_legie;
2 1n
nandZ port map 0 == ¥ in, il > ¥ in, o =» nand()
nand? port map (i0 =» xor(, il => C in, o => nandl)
nand? port map (10 => nand0, il »nandl = out
xor?2 port map (10 => X in, 1l ¥ in, o => xorl };
¥xor?2 port map (i0 => xor0d, il > C in, o => 5 o i

Page 11

Page 12

library UNISI
use UNISIM

entity two bit
ort
in STD_LOGIC;
ln STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
ocul STD LOGIC;
out STD_LOGIC:
; cut STD_LOGIC
1
end two bit addr;

architecture struct of two bit addr is
omponent one bit addr

in, ¥ , C in: in std logic;
. : out std legie

signal o igr : std logic;

one bit addr port map (X in => X0 in, ¥ in => Y0 in, C in =» € in, C out > ¢ out signal, S5 out = 30
X

one bit addr port map |(in => ¥1 in, Y in =»> Y1 in, € in => ¢ out signal, C out =»> C out, 5 out =>

and struct;

Page 13

1bra IEEE;
11 |I'I':"I-'..STD_LDGIC_IIE-!..-“-.I L;
ibrary UNISIM;
use UNISIM.VComponents.all;
ntity two bit addr thb
nd two bit addr thb;
irchitecture two bit addr tb of twoe bit addr th
mponent two kit addr is
I [
in STD LOGIC;
in STD LOGIC;
in STD _LOGIC;
i1 STD_LCIGIC;
in STD_LDGIC;
cut STD LOGIC;
oub STD _LOGIC;
cut 8TD _LOGIC
I
nd component;
gnal std logic 'ar;
gnal std logic o'
ignal std_logic N
ignal std legic '0r;
ignal std leogic ar;
gnal std logic;
ienal Std_lcgil:,'
gnal std_lngin:,;
Il-n--.".n
two bit addr
port map (
- X0 in => X0 in, X1 in => X1 in, Y0 in => Y0 in, ¥1 in => Y1 in, in C in,
C ou > C out, 50 out > 50 ocut, 51 ou » ou
);
X0 in <= NOT X0 in after 5 ns;
X1 1 <= NOT X1 in after 10 ns;
¥0 in <= NOT Y0 in after 20 ns;
Y1 in <= NOT ¥1 in after 40 ns;
nd two kit addr th;

Page 14

Design Sources
® .. two_bit_addr
& U0 : one_bit_addr
® ul: nand2
® ul : nand?
® u2: nand2
@ ud:xor2
@ ud:xor?
® ul:one_bit_addris
® ul : nand?2
® ul: nand2
@ u2: nand2
@ u3:xor2
® ud:xor?
Constraints
Simulation Sources (1
sim_1
@ .. two bit_addr tb
@ UUT : twao_bit_addr
@ ul; one_bit_addr(st
@ ul :one_bit_addr(=t

200 ns 900 ns

Page 15

L-Edit Results

Here is the resulting L-Edit layout of a one-bit-full-adder:

Il__ll--Il

A ERER | |[meel En
ﬂ|iiﬁll|

1o Tlplly

Page 16

Here is the resulting L-Edit layout of a two-bit-full-adder, after connecting two one-bit-full-adders

together as laid out in the design steps above:

Page 17

DRC Verification

Here are the resulting DRC check verification messages and file:

| CeliD.xt - Notepad

File Edit Format View Help
bRC Errors in cell Cell@® of file C:\Users\RodericklLRenwick\Documents\83_mySchoolStuff\@5_UMD_Fall 2819\ECE_413_VLSI\HW_5\adder.

@ errors.

DRC Merge/Gen Layers Elapsed Time: ©.000000 seconds.

DRC Test Elapsed Time: 0.0808880@ seconds.

DRC Elapsed Time: @ seconds.

Mo DRC errors found,

Page 18

Conclusion

The homework was successfully verified and validated from both the software implementation in
Valvado, and the hardware layout design in L-Edit. Overall, I learned a lot from this lab. It really

challenged me to think carefully and plan ahead for the layout from start to finish.

