
Page 1 

 

ECE 413: Intro to VLSI 
 

Final Project: 2-Bit ALU 
 

Adam Rawski & Roderick Renwick 
 

 
 
 
 

 
 
 
 

December 16, 2019 
Fall 2019 

 
 
 
 
 
 
Honor Code: 
 
I have neither given nor received unauthorized assistance on this graded report. 
 
 
X_______________________Adam_Rawski_&_Roderick_Renwick_____________________ 
  



Page 2 

 

Table of Contents 

Table of Contents 2 

Concept 3 

Design 4 

Implementation 10 

Testing 13 

Documentation 14 

 
  



Page 3 

 

Concept 

This purpose of this project is to design, implement, and simulate a two-bit ALU via CMOS 

transistors. The following block diagram belore (figure-1) shows how to construct a two-bit ALU from 

two one-bit ALUs. The two-bit ALU shall be able to perform four basic operations: addition, AND, NOR, 

and XOR. The performed operation will be determined via the select lines. 

 

 

Figure-1: Two-Bit ALU Block Diagram 

 



Page 4 

 

Design 

As stated in the previous section, a two-bit ALU may be constructed from cascading two one-bit 

ALUs together, therefore, the first step is to design a single one-bit ALU. A one-bit ALU is composed of 

three units: an arithmetic unit to perform the addition (i.e., a full adder), a logic unit to perform the logical 

operations (i.e., AND, NOR, and XOR), and a 4:1 multiplexer to provide the output determined by two 

select lines. The following figure below (figure-2) shows this design of a one-bit ALU. 

 

 

Figure-2: One-Bit ALU Design 

 

The instruction set for this one-bit ALU design is laid out below in table-1. 

 

INPUTS OUTPUTS 

SEL_0 SEL_1 Operation 

0 0 Addition 

0 1 AND 

1 0 NOR 

1 1 XOR 

Table-1: Two-Bit ALU Instruction Set 

  



Page 5 

 

One-Bit ALU Arithmetic Unit 

Now that we have the one-bit ALU broken down into the three sub-modules (i.e., the arithmetic 

unit, the logical unit, and the multiplexer), we can start designing a one-bit full adder required for the 

arithmetic unit. We must start with the truth table for this module so that we may use k-maps to derive the 

optimized boolean algebra functions needed to layout the logic-gate design. The next figure (figure-3) 

lays out the truth tables and k-maps of the one-bit ALU. 

 

 

Figure-3: One-Bit Full Adder Truth Tables & K-Maps 

 

Using the K-Maps we can optimize the functions to derive the needed logic gates, which is shown 

in the following figure (figure-4) on the next page. It details the operations performed to realize the sum 

and carry-out output variables for the one-bit full adder. 



Page 6 

 

 

Figure-4: Optimized Boolean Algebra Expressions for One-Bit Full Adder 

 

Now we can finally layout the logic gates to realize a one-bit full adder, as it requires three 

NAND gates, and two XOR gates. The logic gate design is shown below (figure-5). 

 

 

Figure-5: One-Bit Full Adder Logic-Gate Design  



Page 7 

 

One-Bit ALU Multiplexer Unit 

Moving onto the second sub-module for the one-bit ALU, we need to design the 4:1 multiplexer. 

For simplicity, we shall design this using all NAND logic-gates, and break it down into three groups of 

2:1 multiplexers, where two select lines are responsible for determining which one of the four input 

signals will be the output. The breakdown of multiplexer groups are shown below in figure-6, and the 

logic gate representation follows in figure-7. 

 

 

Figure-6: 4:1 Multiplexer Using 2:1 Multiplexers 

 

 

Figure-6: 4:1 Multiplexer Using NAND Logic-Gates  



Page 8 

 

One-Bit ALU Logic Unit 

Finally we are onto the third sub-module for the one-bit ALU, where we need to design the AND, 

NOR, and XOR logic gates. We must start by using the truth tables to describe the function in such a way 

that we can construct the layout of the design using CMOS transistors.  

 

Firstly, we will design a NAND gate, as it is cheaper to use, we have constructed our multiplexer 

from them, and we can cascade two NAND gates together to get the functionality of a AND gate. We will 

also require a XOR gate layout. The truth tables for these logic gates are shown below in tables 2, and 3. 

 

A B (AB)’ 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Table-2: NAND Logic-Gate Truth Table 

 

A B (A⊕B) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table-3: XOR Logic-Gate Truth Table 

 

Now we may use these tables to derive an expression that allows us to implement the design from 

CMOS transistors. The following page details these expressions. 



Page 9 

 

  

Figure-7:  NAND Logic Derive to CMOS Form Figure-8: XOR Logic Derive to CMOS Form 

 

For simplicity, we will use NAND gates throughout and design our wanted NOR functional from 

the use of multiple NAND gates, as well as our AND gate. The following figure below show an AND 

gate composed of NAND gates (figure-9).  

 

 

Figure-9: AND Gate Logic via NAND Gates 

 

Likewise, the next figure below shows a NOR gate composed of NAND gates (figure-10).  

 

 

Figure-10: NOR Gate Logic via NAND Gates 



Page 10 

 

Implementation 

From the expressions detailed in the design section, we may now implement the CMOS 

configurations and stick figure diagrams from our needed logic-gates. Note that since we have simplified 

all of our modules and submodules into XOR and NAND gate designs, we only needed to implement 

these to gates before we can lay out the CMOS transistors to build our two-bit ALU. 

 

Figures 11, and 12 detail the layout implementation for a NAND gate below. 

  

Figure-11: NAND Gate CMOS Implementation Figure-12: NAND Gate CMOS Stick Diagram 

  

Figures 13, and 14 detail the layout implementation for an XOR gate below. 

 

  

Figure-13: XOR Gate CMOS Implementation Figure-14: XOR Gate CMOS Stick Diagram 



Page 11 

 

 

One-Bit ALU in L-Edit 

We are now able to implement the transistor layouts in L-Edit to realize the full design. Starting 

with the one-bit ALU, you can see it has been broken up into two rows, and the left and right sides are 

divided by the select lines (figure-15).  

 

 

Figure-15: One-Bit ALU Layout in L-Edit 

 

The left side of the top row is the one-bit full adder, and the left of the bottom row is the AND, 

NOR, and XOR gates laid out correspondingly. The right sides of the one-bit ALU show the 4:1 

multiplexer implementation, as the outputs of the logic and arithmetic units are fed in as inputs, and the 

blue select lines in the middle dictate the operation given for the output.  

 

The last step is to cascade two ALUs to complete our design and initial concept.  

  



Page 12 

 

Two-Bit ALU in L-Edit 

Finally, we arrive at the last layout that illustrates our two-bit ALU from the initial concept. 

 

 

Figure-16: Two-Bit ALU Layout in L-Edit 
 
 

 



Page 13 

 

Testing 

The DRC check below (figures 17, and 18) shows that the two-bit ALU is verified to have been 

implemented corrected using the design rules for the transistor layouts. 

 

 

Figure-17: DRC Error File 

 

 

Figure-18: DRC Error Notification 

 

The simulated waveforms below (figure-19) validates our two-bit ALU design as it was 

implemented in Valvado to run the circuit simulation. The code for the two-bit ALU written in Valvado is 

located in the following documentation section, detailing the test bench for the simulation as well. 

 

 

Figure-19: Resulting Waveforms of Two-Bit ALU Simulation 



Page 14 

 

Documentation 

The following figures show the implementation of the two-bit ALU through VHDL, simulated 

with Valvado. The breakdown follows the design steps, and the test bench is provided at the end. 

 

 

 

 



Page 15 

 

 

 

 



Page 16 

 

 

 

 



Page 17 

 

 

 

 



Page 18 

 

 

 

  



Page 19 

 

The last two figures displayed below are of the test bench file used for the simulation. 

 

 

 


