Page 1

ECE 413: Intro to VLSI

Final Project: 2-Bit ALU

Adam Rawski & Roderick Renwick

DEARBORN

December 16, 2019
Fall 2019

Honor Code:

I have neither given nor received unauthorized assistance on this graded report.

X Adam_Rawski_&_ Roderick_Renwick

Table of Contents
Concept

Design
Implementation
Testing

Documentation

Table of Contents

Page 2

10
13

14

Page 3

Concept

This purpose of this project is to design, implement, and simulate a two-bit ALU via CMOS
transistors. The following block diagram belore (figure-1) shows how to construct a two-bit ALU from
two one-bit ALUs. The two-bit ALU shall be able to perform four basic operations: addition, AND, NOR,

and XOR. The performed operation will be determined via the select lines.

Figure-1: Two-Bit ALU Block Diagram

Page 4

Design

As stated in the previous section, a two-bit ALU may be constructed from cascading two one-bit
ALUs together, therefore, the first step is to design a single one-bit ALU. A one-bit ALU is composed of
three units: an arithmetic unit to perform the addition (i.e., a full adder), a logic unit to perform the logical
operations (i.e., AND, NOR, and XOR), and a 4:1 multiplexer to provide the output determined by two
select lines. The following figure below (figure-2) shows this design of a one-bit ALU.

Figure-2: One-Bit ALU Design

The instruction set for this one-bit ALU design is laid out below in table-1.

INPUTS OUTPUTS
SEL 0 SEL 1 Operation
0 0 Addition
0 1 AND
1 0 NOR
1 1 XOR

Table-1: Two-Bit ALU Instruction Set

Page 5

One-Bit ALU Arithmetic Unit

Now that we have the one-bit ALU broken down into the three sub-modules (i.e., the arithmetic
unit, the logical unit, and the multiplexer), we can start designing a one-bit full adder required for the
arithmetic unit. We must start with the truth table for this module so that we may use k-maps to derive the
optimized boolean algebra functions needed to layout the logic-gate design. The next figure (figure-3)
lays out the truth tables and k-maps of the one-bit ALU.

Figure-3: One-Bit Full Adder Truth Tables & K-Maps

Using the K-Maps we can optimize the functions to derive the needed logic gates, which is shown
in the following figure (figure-4) on the next page. It details the operations performed to realize the sum

and carry-out output variables for the one-bit full adder.

Page 6

Figure-4: Optimized Boolean Algebra Expressions for One-Bit Full Adder

Now we can finally layout the logic gates to realize a one-bit full adder, as it requires three

NAND gates, and two XOR gates. The logic gate design is shown below (figure-5).

Figure-5: One-Bit Full Adder Logic-Gate Design

Page 7

One-Bit ALU Multiplexer Unit

Moving onto the second sub-module for the one-bit ALU, we need to design the 4:1 multiplexer.
For simplicity, we shall design this using all NAND logic-gates, and break it down into three groups of
2:1 multiplexers, where two select lines are responsible for determining which one of the four input
signals will be the output. The breakdown of multiplexer groups are shown below in figure-6, and the

logic gate representation follows in figure-7.

Figure-6: 4:1 Multiplexer Using 2:1 Multiplexers

Figure-6: 4:1 Multiplexer Using NAND Logic-Gates

Page 8

One-Bit ALU Logic Unit

Finally we are onto the third sub-module for the one-bit ALU, where we need to design the AND,
NOR, and XOR logic gates. We must start by using the truth tables to describe the function in such a way

that we can construct the layout of the design using CMOS transistors.

Firstly, we will design a NAND gate, as it is cheaper to use, we have constructed our multiplexer
from them, and we can cascade two NAND gates together to get the functionality of a AND gate. We will

also require a XOR gate layout. The truth tables for these logic gates are shown below in tables 2, and 3.

A B (ABY
0 0 1
0 1 1
1 0 1
1 1 0

Table-2: NAND Logic-Gate Truth Table

A B (A®B)
0 0 0
0 1 1
1 0 1
1 1 0

Table-3: XOR Logic-Gate Truth Table

Now we may use these tables to derive an expression that allows us to implement the design from

CMOS transistors. The following page details these expressions.

Page 9

Figure-7: NAND Logic Derive to CMOS Form Figure-8: XOR Logic Derive to CMOS Form

For simplicity, we will use NAND gates throughout and design our wanted NOR functional from
the use of multiple NAND gates, as well as our AND gate. The following figure below show an AND
gate composed of NAND gates (figure-9).

Figure-9: AND Gate Logic via NAND Gates

Likewise, the next figure below shows a NOR gate composed of NAND gates (figure-10).

Figure-10: NOR Gate Logic via NAND Gates

Page 10

Implementation

From the expressions detailed in the design section, we may now implement the CMOS
configurations and stick figure diagrams from our needed logic-gates. Note that since we have simplified
all of our modules and submodules into XOR and NAND gate designs, we only needed to implement

these to gates before we can lay out the CMOS transistors to build our two-bit ALU.

Figures 11, and 12 detail the layout implementation for a NAND gate below.

Figure-11: NAND Gate CMOS Implementation Figure-12: NAND Gate CMOS Stick Diagram

Figures 13, and 14 detail the layout implementation for an XOR gate below.

Figure-13: XOR Gate CMOS Implementation Figure-14: XOR Gate CMOS Stick Diagram

Page 11

One-Bit ALU in L-Edit

We are now able to implement the transistor layouts in L-Edit to realize the full design. Starting
with the one-bit ALU, you can see it has been broken up into two rows, and the left and right sides are

divided by the select lines (figure-15).

Figure-15: One-Bit ALU Layout in L-Edit

The left side of the top row is the one-bit full adder, and the left of the bottom row is the AND,
NOR, and XOR gates laid out correspondingly. The right sides of the one-bit ALU show the 4:1
multiplexer implementation, as the outputs of the logic and arithmetic units are fed in as inputs, and the

blue select lines in the middle dictate the operation given for the output.

The last step is to cascade two ALUs to complete our design and initial concept.

Page 12

Two-Bit ALU in L-Edit

Finally, we arrive at the last layout that illustrates our two-bit ALU from the initial concept.

Figure-16: Two-Bit ALU Layout in L-Edit

Testing

The DRC check below (figures 17, and 18) shows that the two-bit ALU is verified to have been

implemented corrected using the design rules for the transistor layouts.

implemented in Valvado to run the circuit simulation. The code for the two-bit ALU written in Valvado is

located in the following documentation section, detailing the test bench for the simulation as well.

DRC Errors in cell Cell® of file C:\Users\RodericklLRenwick\Documents\@3_mySchoolStuff\@5_UMD_Fall_ 2819\ECE_413_VLSI

@ errors.
DRC Merge/Gen Layers Elapsed Time: ©.000000 seconds.
DRC Test Elapsed Time: 8.80000@ seconds.

DRC Elapsed Time: @ seconds.

Figure-17: DRC Error File

L-Edit >

Mo DRC errors found.,

.

Figure-18: DRC Error Notification

The simulated waveforms below (figure-19) validates our two-bit ALU design as it was

8 AO_in
8 A1_in
8 BO_in
e B1_in
4 S0_in

851_in

8 C_in

e C_out
e FO_out

e F1_out

Figure-19: Resulting Waveforms of Two-Bit ALU Simulation

Documentation

Page 14

The following figures show the implementation of the two-bit ALU through VHDL, simulated

with Valvado. The breakdown follows the design steps, and the test bench is provided at the end.

ibrary I1ERE;
[ERE.STD_LOGIC _1164.ALL;

ibrary UNISIM;

ie UNISIM.VComponents.all;

Jentity nor2 is
port (
n std_legic;
: out std logic
)i
nd nor?;
archite behaviour B2 i
5 e

i library IEEE;

! use IEEE.STD LOGIC 1164.ALL;

library UNISIM;

i use UNISIM.VComponents.all;

: entity nand2 is

port (
out std legic

)i

Send nand?;

end behaviour;

i0, i1 : in std legic;

! library TEEE;
use IEEE.STD_LOGIC_1164.ALL

' library UNI
» use UNISIM.

entity and2 i
port (
: in std leogic;
ut std logic

}i

and?;
u behavio f and2 i
(10 il)

Page 15

|.STD_LOGIC_1164.ALL;

library U
' use UNISIM

nents.a

in std_logic;
out std logic

o not ((not (((i0 and i1)) d i0)) and (ot n (i0 and il B
behaviour;
libr
use I "
library UNISI
use UNISIM.VComponents.a 7
enkity one bit full adder
Po (
X in : in STD LOGIC;
n : in STD_LOGIC;
i g 3 STD_LOGIC;
hof 1t @ out STD _LOGIC;
u : out STD_LOGIC
)i
ne bit full adder;
itect 2’ struct one bit full adder
compone
p ¢ 10; il std logic; ut std logic);
c mponent ;
mponent nand2
port (i0, il : in std logie; ut std logic);
mpe s
iqg r(std_logic;
5iqgna) : std logic;
signal nandl : std logic;
beqgin
u0 : nand2 pc map (i0 => X in, il => Y in, > nand0) :
ul : nand? port map (i0 => xor0, il ¢ in, > nandl)
uZz : nand2 port map (i0 => nand0, il =>nandl, © C out);
u 2 map (i0 => X in, il => Y in, 5)
! XOT2 D map (i0 => x i1 = C in, > S out):

Page 16

i Four ne mux

ort (

) n STD_LOGIC;

n STD_LOGIC;

n STD_LOGIC;

3 in STD_LOGIC;

n STD_LOGIC;

n STD_LOGIC;

MO ut STD_LOGIC

)i
d four one mux;

hitecture f four one mux i:

ocmponen nd2

port (i0, i in std logic; out std logic);

end component;

g std logic;

51 std_logic;

std logic;

1 std logic;

2 std _legic;
std_logic;

std logic;

std logic;

std logic;

gn: std logic;

S0 <= n i

not_S1 <= not ;

0 nand2 p (io S0, i1 => D3, o => nand 0);
nand? po map (i0 => not S0, il => D2, o => nand 1);

2 nand?2 p map (10 > S0, 1 > Dl, o =>nand 2);
nand2 p map (i0 => not S0, 1 => DO, o => nand 3 });
nand2 p map (i0 => nand 1 > nand , 0 => nand 4);
nand2 p map (10 => nand 2, i1l => nand 3, ¢ => nand 5);
nand? pc map (i0 => nand 4, 1 => , 0 =>» nand 6);
nand? po map (i0 => nand 5, 1 > not 81, o => nand Y
nand2 pe map (10 => nand 6, > nand 7, o => MO);

ond struct;

Page 17

library IEEE;
.STD_LOGIC 1164.7

use IEER

use UNISIM.VComponents.all;

brary UNISIM;

ent ne bit alu is]
(
X0 i : in STD_LOGIC;
0; a : in STD_LOGIC;
n i in STD_LOGIC;
1 : out STD_LOGIC;
S i ¢ in STD_LOGIC;
21 in : in STD LOGIC;
S ou : out STBiLOGIC
)i
end one bit u;
architect e struct of one bit alu is
omponent one bit full adder \ND_G. i3 € n
port (
X im, Y in, : in std logic;
ut, S out : out std logic
bi
component xor2
rt (i0, n std legic; o : out std logic);
component ;
mpone nor2
port (= 4 in std logic; ¢ out std logic);
end component;
onent and2
(, i n std_logic; : out std logic):
en mponent ;
omponent four one mux
port (DO, , D2, D3, S0, S1 : in std logic; MO : out std legic);
end component;
gna 0 ¢ std logic;
gnal D1 : std logic;
ignal D2 : std logie;
igne 3 @ std logic:;
eqgi

0 : one bit full adder port map (X in => X0 in, Y in => Y0 in, € in => C in, € out => C out, § ou no);
and2 port map (i0 => in, il => Y0 in, o => D1);

2 nor? port map (i0 => in, il => Y0 in, o => D2);
xor2 port map (i0 => in, il => Y0 in, o => D3);

4 : four ohe mux port map (> D0, D1 => D1, D2 => D2, D3 => D3, > S0 in, S1 => S1 in, MO => S out);

end struct;

Page 18

library IEEE;
use TEEF.STD LOGIC 1164.ALL;

library UNTIS

use UNISIM.VComponents.all;

ty two bit alu is
ort (
AD dr : in STD_LOGIC;
30 1 : in STD_LOGIC;
Al in : in STD_LOGIC;
3 i g n STD_LOGIC;
80 i : in STD_LOGIC;
S 3 : in STD_LOGIC;
in : in STD_LOGIC;

u : oub STD_LOGIC;

lu;

STD_LOGIC;
STD_LOGIC

struct

one bi

t

wo bit alu is 2-bit 1d

alu

in STD_LOGIC;
n STD_LOGIC;
n STD_LOGIC;

ut STD_LOGIC;
50 in : in STD_LOGIC;
31 in : in STD_LOGIC;
L : oub STD_LOGIC

signal « ign, : std_logic;

in, C in => C in, C ou > ¢ out

n => c out signal, C ou > C out, S0 in

The last two figures displayed below are of the test bench file used for the simulation.

Page 19

library

library

UNIS

entity

nd two

wrchitec

.STD_LOGIC 1164.ALL;

UNIS
IM.

ture

alu
slu tb;

two bit

wo b

alu tb of two bit
t a

in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
in STD:LOGIC;
in STD_LOGIC;
in STD:LOGIC;
in STD_LOGIC;
»ul STD_LOGIC;
STD_LOGIC;
STD_LOGIC

port

Ewe

map

bit al

(

A0 ir

ou

AQ

Al

std_logic
std_logic
std_logic
std logic
std:logic
std logic

std_logic

std_logic;
std_logic;
std_logic;

> A0

in after
in afte

aft
af
after

20 1
r 40 n

r 160 ns;

