

Park Smart
Final Report and Overview v1.0

April 10, 2020

Team Name - Big Brother

Team Members:
Adam Rawski - amrawski@umich.edu

Bryan Brauchler - bbrauchl@umich.edu
Roderick Renwick - rodericklrenwick@gmail.com

Liam Mulligan - lpmullig@umich.edu

Project Advisor - Professor Miller

Observations:

1. Extracting parking lot lines would be easier and much more reliable using morphology.

2. Classification using raw pixel data with a neural network is not ideal. Doing feature
extraction to obtain information directly applicable to automobiles (shape, aspect ratio, size
etc.) would provide enhanced accuracy in an actual application.

In general, the team has addressed their project effectively and created a very good approach
to the general problem. Had this been a normal semester, it is highly likely that the design
would have been outstanding.

jwvm

Table of Contents

1. Introduction 4

1.1 Purpose 4

1.2 System Description 4

1.3 Interface Description: 6

1.4 References 7

2. Constraints 8

2.1 Environmental Constraints 8

2.2 Size, Weight, Cost, Power, Constraints 8

2.3 Reliability and Safety Considerations 8

2.4 Site Information 8

3. System Requirements 9

3.1 The system shall collect data via camera of a parking lot. 9

3.2 The system shall be approved by the University and absent from privacy concerns. 9

3.3 The system shall send and receive messages and data from remote locations. 9

3.4 The system must be accurate in counting parking spots. 10

3.5 The system must distribute information to users. 10

4. System Design 11

4.1. Computer Vision Module 11

4.2 Network Module (Traces to Requirements 3.3, 3.5) 17

4.3 User Application Module (Traces to Requirement 3.5) 22

4.4 Small Scale Model 24

5. System Testing 26

5.1 Testing Procedures 26

5.1.1 Computer Vision Module Test Plan 26

5.1.1.CV_F1. Image Processing Pipeline: Requirement 3.4.1, 3.4.2, 3.4.3, 3.4.4 26

5.1.1.CV_F1.1. Test Case Requirement: 26

5.1.1.CV_F1.2. Test Case Description: 27

5.1.1.CV_F1.3. Test Environment and Conditions: 27

5.1.1.CV_F1.4. Input Data Set: 27

5.1.1.CV_F1.5. Expected Data Values and Results: 27

1.4.CV_F1.6. Test Procedure: 28

5.1.2 Network Module Test Plan 29

5.1.2.N_F1. Computer Vision Connectivity: Requirement 3.3.1, 3.3.2, 3.3.3, 3.3.4,
3.3.5, 3.3.6 29

1

5.1.2.N_F1.1. Test Case Requirements: 29

5.1.2.N_F1.2. Test Case Description: 30

5.1.2.N_F1.3. Test Environment and Conditions: 30

5.1.2.N_F1.4. Input Data Set: 31

5.1.2.N_F1.5. Expected Data Values and Results: 31

5.1.2.N_F1.6. Test Procedure: 32

5.1.2.N_F2. Database Retrieval and Commit: Requirement 3.5.1, 3.3.7, 3.3.8 32

5.1.2.N_F2.1. Test Case Requirement: 32

3.3.7 The web server shall communicate with clients over apis functioning on
the http
 protocol (api protocol == http) 32

3.3.8 The web server must log information regarding parking to a database for
 historical and searchable data. 32

5.1.2.N_F2.2. Test Case Description: 33

5.1.2.N_F2.3. Test Environment and Conditions: 33

5.1.2.N_F2.4. Input Data Set: 33

5.1.2.N_F2.5. Expected Data Values and Results: 34

5.1.2.N_F2.6. Test Procedure: 34

5.1.2.N_S1. Connection Error Reporting: Requirement 3.5.2, 3.5.2.1, 3.5.2.2, 3.5.2.3
35

5.1.2.N_S1.1. Test Case Requirement: 35

5.1.2.N_S1.2. Test Case Description: 36

5.1.2.N_S1.3. Test Environment and Conditions: 36

5.1.2.N_S1.4. Input Data Set: 36

5.1.2.N_S1.5. Expected Data Values and Results: 37

5.1.2.N_S1.6. Test Procedure: 37

5.1.3 User Application Module Test Plan 39

5.1.3.A_F1. Test Case Requirement: 39

3.5.1 The app/web interface must service requests at all times of the day 39

5.1.3.A_S1.1. Test Case Requirement: 40

5.1.3.A_S1.2. Test Environment and Conditions: 40

5.1.3.A_S1.3. Input Data Set: 40

5.1.3.A_S1.4. Expected data values and results: 40

5.1.4. Full System Testing 42

5.1.4.S_F1. System Output: Requirement 3.4 42

5.1.4.S_F1.1. Test Case Requirement: 42

5.1.4.S_F1.2. Test Environment and Conditions: 42

5.1.4.S_F1.3. Input Data Set: 42

2

5.1.4.S_F1.4. Expected data values and results: 43

5.1.4.S_F1.5. Test Procedure: 44

5.1.4.S_S1. System Update Latency: Requirement 3.4 44

5.1.4.S_S1.1. Test Case Description: 44

5.1.4.S_S1.2. Test Environment and Conditions: 44

5.1.4.S_S1.3. Input Data Set: 44

5.1.4.S_S1.4. Expected data values and results: 44

5.1.4.S_S1.5. Test Procedure: 45

5.2 Testing Results 46

5.2.1 Computer Vision Module Test Results 46

5.2.1.1 Camera Calibration and Perspective Transformation 46

5.2.1.2 Canny Edge Detection 46

5.2.1.3 Parsing of Parking Space Clusters 47

5.2.1.4 Hough Line Transform 47

5.2.1.5 Parking Space Parsing 48

5.2.1.6 Data Collection 48

5.2.1.7 Convolutional Neural Network Training 49

5.2.1.8 Convolutional Neural Network Predictions 51

5.2.2 Network Module Test Results 53

5.2.2.N_F1 Connectivity Testing 53

5.2.2.N_F2 Database Retrieval and Commit 58

5.2.2.N_S1 Connection Error Reporting 61

5.2.3 User Application Module Test Results 65

5.2.3.A_F1 Data Reporting Testing 65

5.2.3.A_S1 Distracted Driver and Warnings Testing 66

5.2.4 Full System Test Results 69

5.2.4.S_F1 System Output Testing 69

5.2.4.S_S1 System Latency Testing 71

6. Budget 73

7. Master Schedule 74

8. Conclusion 75

3

1. Introduction

1.1 Purpose

This document defines the low level design for Park Smart.

Finding space for parking at the University of Michigan Dearborn has progressively taken more
time as more people are commuting to campus. Many students and faculty have expressed
frustration over the available parking on campus. A system to assist in the process of parking is
becoming more necessary to cater to the needs of faculty and students alike. This effort
consists of a Computer Vision Module that will use machine learning to make inferences about
which parking spots are available and which are not. Then the system will communicate with a
web server to post those inferences on the internet. Various AI concepts will be enacted as well
as different routing and networking techniques to move data once it is available.

Figure 1.1: ParkSmart Concept

1.2 System Description

The Park Smart system consists of three modules. The first, referred to as the Computer Vision
Module, will be physically located at a high vantage point, overlooking the parking lot. Its
responsibility is to collect images, process that image data, and forward the results to a
computer server. The second module, referred to as the Networking Module, contains the
server and all the code to transfer data across a network. This module is responsible for storing
and distributing data to endpoints. The final module, the Application module, is responsible for
requesting, receiving, and displaying the data from the network module.

4

This concept is highly expandable, with the opportunity for several vision modules and
statistical studies on data. However, for the purposes of a two-semester design window, a
simplified system diagram will be created for a lab test environment. This leaves a framework
that is able to be expanded in future semesters.

Figure 1.3.1: Top-Level Concept Abstraction

The following figure displays the three modules required to realize the concept.

Figure 1.3.2: System Modules Overview

5

1.3 Interface Description:

Figure 1.4: ParkSmart Interface Diagram

There are four primary interfaces involved in this system. The first is the interface between the
vision subsystem and the image processing subsystem, where images are passed through the
neural network for training/vacancy inference. The next is between the image processing
subsystem and the network module, where the vacancy data is encoded and sent over Wi-Fi to
the server. The third primary interface is between the server and the client, where the stored
data is accessed graphically via a mobile application. The last is situation-specific; in this case,
between the battery and the Computer Vision Module.

For the first interface, the communication between the camera and the board will be
performed over a ribbon cable designed specifically for the Jetson Nano (included with the
camera). The next two will use the IEEE 802.11ac Wi-Fi standard; the NIC for the Jetson board is
capable of using the 2.4 GHz and 5 GHz transmission bands. The battery will be connected to a
step-down voltage regulator, which will be wired directly to the board.

Protocol interfacing for remote access to both the server and the Computer Vision Modules will
take advantage of the standards that are already supported by Linux. Specifically using
standards like SSH for remote administration, SCP for secure data transfer and Sockets for
general internet connectivity. This allows us to leverage the existing infrastructure that exists
on campus.

6

1.4 References

1. Detection of Parking Spots Using 2D Range Data - Jifu Zhou, Luis E. Navarro-Serment and

Martial Hebert
2. IEEE 802.11: MAC and PHY layer specification for implementing WLAN networks
3. MIPI CSI-2 v3.0: Camera Serial Interface specification.
4. https://resizeimage.net/
5. https://markhedleyjones.com/projects/calibration-checkerboard-collection
6. https://github.com/priya-dwivedi/Deep-Learning/tree/master/parking_spots_detector
7. https://www.learnopencv.com/homography-examples-using-opencv-python-c/
8. https://medium.com/@ghimire.aiesecer/getting-started-2-pi-camera-setup-take-picture

-and-shoot-video-with-python-script-embedded-5018c3568a52
9. http://www.netinstructions.com/automating-picture-capture-using-webcams-on-linuxu

buntu/
10. http://cnrpark.it/
11. https://www.element14.com/community/community/designcenter/single-board-compu

ters/blog/2019/05/21/nvidia-jetson-nano-developer-kit-pinout-and-diagrams
12. https://github.com/jeffbass/imagezmq

For the software components, code is hosted on github:
https://github.com/bbrauchl/ParkSmart
https://github.com/amrawski/ParkSmart_App
We hereby give permission to any future student design projects to add to and use our

codebase in developing further upon this project.

7

https://resizeimage.net/
https://markhedleyjones.com/projects/calibration-checkerboard-collection
https://github.com/priya-dwivedi/Deep-Learning/tree/master/parking_spots_detector
https://www.learnopencv.com/homography-examples-using-opencv-python-c/
https://medium.com/@ghimire.aiesecer/getting-started-2-pi-camera-setup-take-picture-and-shoot-video-with-python-script-embedded-5018c3568a52
https://medium.com/@ghimire.aiesecer/getting-started-2-pi-camera-setup-take-picture-and-shoot-video-with-python-script-embedded-5018c3568a52
http://www.netinstructions.com/automating-picture-capture-using-webcams-on-linuxubuntu/
http://www.netinstructions.com/automating-picture-capture-using-webcams-on-linuxubuntu/
http://cnrpark.it/
https://www.element14.com/community/community/designcenter/single-board-computers/blog/2019/05/21/nvidia-jetson-nano-developer-kit-pinout-and-diagrams
https://www.element14.com/community/community/designcenter/single-board-computers/blog/2019/05/21/nvidia-jetson-nano-developer-kit-pinout-and-diagrams
https://github.com/jeffbass/imagezmq
https://github.com/bbrauchl/ParkSmart
https://github.com/amrawski/ParkSmart_App

2. Constraints

2.1 Environmental Constraints

2.1.1 The system in this phase will be developed as a testbed in a laboratory environment, and

conditions of extreme environments will be saved for a later phase.

2.1.2 The system will function in only sunny conditions for the scope of this project.

2.1.3 The system will use pre-collected data on the day of the test in the lab environment.

2.1.4 The system must perform computation on images collected from the roof of HPEC to

accurately characterize that parking lot.

2.2 Size, Weight, Cost, Power, Constraints

2.2.1 The Computer Vision Module must be able to run off a standard 120V 60Hz outlet for

testing.

2.2.2 The server module must be connected to the internet with a route to communicate with

the Computer Vision Module.

2.2.3 The Computer Vision Module must be light as to be mounted atop a building or light post

without needing significant structural support.

2.3 Reliability and Safety Considerations

2.3.1 The system must be accessible remotely and in the case of failure be recoverable retaining

information pertaining to the failure and the current state of the learning agent’s
knowledge base.

2.4 Site Information

2.4.1 The system in this phase will be developed in a laboratory environment.

2.4.2 The system must perform neural network inferences on parking lots at the University of

Michigan-Dearborn.

8

3. System Requirements

University of Michigan - Dearborn parking takes too long, and a system shall be designed to
mitigate this time.

3.1 The system shall collect data via camera of a parking lot.

3.1.1 The Computer Vision Module must be configured such that the entire parking lot exists
In the camera’s field of view. (parking lot ∊ camera FOV)

3.1.2 The system must identify parking spots at a range of 1-3 meters away from the camera.
(1-3m ∊ camera calibration distance)

3.1.3 The camera update rate must be at least 1 Hz (framerate ≥ 1Hz)
3.1.4 The Computer Vision Module must be lighter than 100 lb to mount without the need for

additional structural support (Computer Vision Module weight ≤ 100 lb)
3.1.5 The Computer Vision Module must save collected data for at least 24 Hours (Retention

Time > 24 hr)
3.1.6 The Computer Vision Module shall have a kill switch that will disconnect the battery
from the image processing hardware.

3.2 The system shall be approved by the University and absent from privacy concerns.

3.2.1 Permission must be granted for surveillance of parking lots
(∃ written approval for parking surveillance).

3.2.2 Access to rooftop location for data acquisition must be granted to the group
(∃ access to camera mounting point).

3.2.3 The Computer Vision Module must operate without access to a standard wall outlet.
(∃ Internal Power Source)

3.2.4 The Computer Vision Module must be waterproofed such that it can remain in position
up to five days at a time (Waterproof > 5 days)

3.3 The system shall send and receive messages and data from remote locations.

3.3.1 The network must achieve a throughput of at least 3.2 MBit/s from the Computer Vision
Module to the web server to report data. This number is based on the expected camera
update rate layed out in requirement 3.1.3 and the resolution of an image.
(throughput ≥ 3.2MBit/s).

3.3.2 The network must guarantee packet arrivals to the destination network
(Unreported Packet Loss = 0, TCP enabled).

3.3.3 The system must interface to existing wireless topography.
(∃ IEEE 802.11ac compatibility).

3.3.4 External clients must have remote access to the server via network.
(∃ external network interface).

3.3.5 Any clients connecting to the server must be authenticated (∃ Client Authentication).
3.3.6 Any confidential or private data must be encrypted (∃ Link Encryption)
3.3.7 The web server shall communicate with clients over apis functioning on the http

protocol (api protocol == http)

9

3.3.8 The web server must log information regarding parking to a database for historical and
searchable data.

3.4 The system must be accurate in counting parking spots.

3.4.1 The Computer Vision Module must infer the correct state 75% of the time.
(P(Calculated == Actual) ≥ 75%).

3.4.2 If a vehicle is parked in multiple parking spaces, the inference must classify all spaces as
occupied.

3.4.3 The inference must be run at a rate of at least once a minute. (inference update rate ≥
.016Hz)

3.4.4 The inference must classify small pedestrian vehicles such as motorcycles as being

occupied spaces. (Edge-case classification > 50%)

3.5 The system must distribute information to users.

3.5.1 The web/app interface must service requests at all times of day.
(Accessibility > 99%)

3.5.2 The web/app interface must report connection errors to the user.
3.5.2.1 The web/app interface must report Computer Vision Module Dropout errors

(Dropout detection < 3 minutes)
3.5.2.2 The web/app interface must report visibility warnings
3.5.2.3 The web/app interface must report invalid API calls as the response to the html

Requests. (> 99% usage errors reported back to user)
3.5.3 The app interface must provide warnings to users who are likely driving

(warnings when speed > 10mph)

10

4. System Design

4.1. Computer Vision Module

Figure 4.1: Low-Level Design of Computer Vision Module

4.1.1 Camera Initialization (Traces to Requirements 3.4.1, 3.4.2 and 3.4.4)

Using Python and OpenCV, some pre-processing will be done on images before going
into the neural networks. Operations like de-warping and perspective transformation
will be done for correcting camera distortion (see diagram displayed below).

Figure 4.1.1: Camera Calibration Module

11

4.1.1.1 Distortion Correction (de-warping input image frame)
- Tangential and radial distortion shall be corrected as the input camera image will be

de-warped via a distortion matrix and intrinsic value matrix, unique to the physical
camera. These matrices are found via imaging a physical chessboard multiple times
over, to track 2D pixel locations of the squares at different 3D positions. Knowing that
the squares are consistent in size and contain straight vertical and horizontal lines
normal to the chessboard, translation can be done to ensure distortion correction of an
image.

4.1.1.1 Perspective Transformation (de-warping input image frame)
- A bird’s-eye-view image shall be constructed from the incoming parking lot images

taken at an angle. To do so, a homography matrix is used to map the pixel positions
from one perspective to another. This is again done using a physical chessboard to take
an image of it angled from the incoming perspective, and then taking the following
image from the target perspective. In this case, the target perspective is a
bird’s-eye-view, therefore, the target image will show the chessboard plane normal to
the camera lens.

4.1.2 Image Parsing(Traces to Requirements 3.1, 3.2)

This module will parse parking spaces during apropos conditions. It will then use a Pickle
file in python to save the locations of those parking spaces for future use. Sorting of
training images is to be done later via manual selection of the data gathered as a result
of the data collection module.

Figure 4.1.2: Image Parsing Examples of Color Masking & Edge Detection

4.1.2.1 Bitwise Color Masking

12

- Since most parking lot lines are standardly yellow or white, a bitewise color mask will
first be applied to the input parking lot image as we want to focus on the detection of
parking space boundary lines.

4.1.2.2 Canny Edge Detection
- After masking other colors in the image, canny edge detection shall be used to construct

an “edge” image of our parking lot, using a Gaussian blur to smooth out lines detected
from variations in color intensity. As this is dependent on light intensity, the image must
first be converted to gray-scale.

4.1.2.3 Hough Line Transform
- Next the edges must be filtered, as we only need relatively vertical and horizontal lines

in the image (since these are most likely the parking space boundary lines). To do so,
Hough Line Transform shall be applied. Angle and distance parameters are variable and
may be used to account for tolerance in the orientation of the lines sought out.

4.1.2.4 Region of Interest Filtering

- Finally, a region of interest (ROI) mask will be manually determined as to hide any areas
of the image not relevant to parking lot lines. This way, we can ensure with a high
degree of certainty that our program will detect and parse only horizontal and vertical
lines used as the boundaries of parking lot spaces. This is useful as it is a dynamic way of
getting pixel-location values of individual parking spaces which will be parsed as
individual image for training, testing, and real-time prediction purposes.

13

Figure 4.1.2.4: Image Paring Examples of ROI Filtering

4.1.3 Dataset Collection and Storage (Traces to Requirements 3.1, 3.2, 3.3, 3.4)

The CNN shall read in the parking spot input-images and make an inference as to
whether a spot is vacant or occupied. To do so, a database must first be constructed
from manuely sorting the collected data into two classified sets: one for vacant images,
and the other for occupied images. Is important to note that the amount of occupied
images shall be equivalent to the amount of vacant images in the training database as to
not allow any sort of biasing when training the network.

14

Figure 4.1.3: Parking Space ID Dictionary

4.1.3.1 Occupied Images (de-warping input image frame)

- Occupied images will be those determined to have any type of vehicles in them. Those
vehicles will include trucks, cars, motorcycles, and mopeds.

4.1.3.1 Vacant Images (de-warping input image frame)
- All other images, found to not contain a vehicle, will be classified as vacant. Thus, these

images will simply be of empty parking spaces only.

4.1.4 Convolutional Neural Network -- Training (Traces to Requirements 3.4.1-3.4.4)

With respect to training the convolutional neural network, we will need to construct
two datasets composed of two different classes each. One dataset for training, and the
other for testing to monitor the validation accuracy of the network after each epoch to
help watch for overfitting or underfitting. Each dataset will have the vacant and
occupied class of images that will be manually sorted as described earlier. From there,
the training images will undergo one-hot encoding to label the images for the network
which tells it whether it is a vacant or occupied image class.

15

Figure 4.1.4: CNN Build (inference engine)

4.1.4.1 Model Architecture

- The specific architecture of the network will be determined later as the number of
convolution and pooling layers will change with respect to how well the training goes.
This will be much of a trial-and-error approach to structuring the model.

4.1.4.2 Model Implementation

- This will all be implemented in Python, using the OpenCV (for image processing utilities),
and Keras (Tensorflow as the backend) libraries. The diagram below describes the
flowchart for this process.

4.1.5 Convolutional Neural Network -- Inferencing (Traces to Requirement 3.4.1-3.4.4)

Once the architecture of the network has been determined, the dataset has been
sufficiently gathered, and the model has been satisfactorily trained, we will be able to
feed live images in real-time to make inferences from. The model architecture will be
re-constructed, and the saved weights of the network will be loaded in upon startup.
The following diagram illustrates the model inferencing module.

16

Figure 4.1.5: Real-Time Image Inferencing Overview

4.1.6 Hardware

4.1.6.1 Navida’s Jetson Nano GPU (Traces to Requirements 3.1-3.4)

- The Jetson Nano has been chosen because it has an embedded Linux operating system
for ARM64, as well as a significant amount of power and an on-board graphics
accelerator that can be used to help meet the timing requirements of the system.

4.1.6.2 Samsung’s 256 GB microSD card (traces to Requirement 3.1.5)

- Model No.: MB-ME256GA/AM

4.1.6.3 Waveshare’s Wide Angle 4k Camera (Traces to Requirements 3.1.1-3.1.3)

- Chosen to meet the requirements of a large view angle and an adequate resolution at a
range of 10-40m, 160 degree field of view, and its ability to support a suitable
framerate.

- Model No.: IMX219-160

17

4.2 Network Module (Traces to Requirements 3.3, 3.5)

Figure 4.2: Low-Level Design of Network Module

4.2.1 Hardware: Server (Traces to Requirements 3.3.5, 3.3.6, 3.5.1, 3.5.2)
Virtual Server provided by ITS with a static IP and maintained by Professor Watta
identified as lamp.engin.umd.umich.edu. This server is equipped with python3, MySQL,
and PHP.

lamp.engin.umd.umich.edu - Professor Watta’s Server
umd-parksmart-01.umd.umich.edu - Computer Vision Module

4.2.2 University Internet Infrastructure (Traces to Requirements 3.3.1, 3.3.4)

4.2.3 Software: MySQL (Traces to Requirements 3.2.x)

18

MySQL provides a well proven interface to a database structure, and is widely used in
website backends to store data. For this application, MySql will be used as a backend for
storing data on the server

The MySQL framework allows for database access permissions based on accounts. A
framework will be set up such that only authenticated clients will be able to update
entries in the database. User applications will only have access to read the data from the
database.

To interface with the MySQL database with python, a custom API is written in python to
transmit data over http using a post request. Data will be encoded as a JSON string and
sent to the server in the “payload” parameter. It can then be unpacked by the PHP
backend to be stored in the server.

One thing that this database must cover is the ability to expire data. This was done using
timestamp columns in the table and manually expiring any current data in the table
before updating.

Code for the MySQL table access is located at
https://github.com/bbrauchl/ParkSmart/blob/web-dev/ParkSmart-Webapp/api/pull.ph
p

19

https://github.com/bbrauchl/ParkSmart/blob/web-dev/ParkSmart-Webapp/api/pull.php
https://github.com/bbrauchl/ParkSmart/blob/web-dev/ParkSmart-Webapp/api/pull.php

Figure 4.2.3: MySQL Database Transactions

4.2.4 Software: SSH (Traces to Requirement 3.3.4)

As with the Computer Vision Module, the server will be accessible by ssh for remote
administration.

4.2.4 Software: PHP backend (traces to requirement 3.3, 3.5)

The web server will rely heavily on php to serve web pages according to the information
in the mysql database. PHP will also function as the backend for the custom API and will
process post requests to be committed into the database.

Two api calls are to be written: pull and update.
The pull call will request a specific parking lot name from the database. (at the time
being, there is only one lot in the database “Lot_D”) or not specify a lot. The server will
reply with a JSON object representing the current state of the selected lot. In the case

20

that no lot was selected, the call will report all parking lots stored in the database.
Usage and more detailed documentation is located at
http://lamp.engin.umd.umich.edu/~bbrauchl/api/pull.html. Please note that this page is
only available within the University of Michigan’s network.

The second API call is Update. This call is designed for the camera modules to push
updates to the server, and functions similarly to the pull update. For more information,
please visit http://lamp.engin.umd.umich.edu/~bbrauchl/api/update.html. Again, this
page is only available within the University of Michigan’s network.

4.2.6 Software openweathermap API (Traces to Requirement 3.5.2)
To get information about visibility, use the openweathermap API. This is a http based
api to report the weather in a selected area. This information is returned in json and can
be parsed to determine various weather conditions. For more information please visit
openweathermap.org

4.2.7 Software: JavaScript, Libraries: ReactJS, xHttpRequest (Traces to Requirement 3.5.1)
JavaScript will be used to help format the web page for end user use, making the
webpage more dynamic and reloading information when relevant. Specifically, the
ReactJS framework will be used to facilitate features and create a simple yet effective
frontend web application for the system. Finally, xHttpRequest is a javascript library
specifically built for performing http requests in javascript. This makes it possible for
frontend javascript to make calls into the backend of the server, fetching information in
the same way as any other system application.

The frontend of the web interface was created almost exclusively using ReactJS. The
only exception being xHttpRequest for the weather API, and the Parksmart API backend
ReactJS makes it simple to create abstract HTML elements that have more control over
events and can be interacted with in a javascript source file, and makes for a simple
rendering of the parking lot:

ReactDOM.render(
 (<div>
 <h1>ParkSmart</h1>
 <h2>Lot D</h2>
 <ParkingLot lotName="Lot_D" />
 </div>
),

 document.getElementById('root')
);

This outputs a user display that will color code parking spaces corresponding to their
current state, setting the opacity as a function of confidence. In other words, spaces
that are determined as occupied will appear red to the user and spots that are

21

http://lamp.engin.umd.umich.edu/~bbrauchl/api/pull.html
http://lamp.engin.umd.umich.edu/~bbrauchl/api/update.html
https://openweathermap.org/

determined as vacant will be colored green, allowing the user to easily tell where open
parking spaces are, and providing an easy way to query the current state of the parking
lot.

Figure 4.2.4: User Web Interface Frontend

The Javascript application is located under the ParkSmart Webapp-react directory on
GitHub.
https://github.com/bbrauchl/ParkSmart/tree/web-dev/ParkSmart-Webapp-react

4.2.8 Hardware: Wireless NIC (Traces to Requirement 3.3.1, 3.3.3)
Vendor: Waveshare
Model No.: AC8625
Cost: $25
Wireless card for use with the Jetson Nano.

4.2.9 Software: Networking Linux Drivers (Traces to Requirement 3.3.3)

Pre-installed Linux drivers to access networking and manage internet connections.

22

https://github.com/bbrauchl/ParkSmart/tree/web-dev/ParkSmart-Webapp-react

4.3 User Application Module (Traces to Requirement 3.5)

Figure 4.3: Low-Level Design of Application Module

For our system to be useful, it has to be accessible to some user base. In this case, the user base
is the students and faculty at UMD. In order for them to be able to access the parking space
data, we’re creating a mobile application hosted on the UMD server afforded to us.

4.3.1 Software: App (written in Java, in Android Studio IDE)

The app is fairly straightforward; it requests data directly from our UMD hosted server
(which will be stored in a comma separated list sent from the jetson, identifying
pre-numbered spots as occupied or vacant). The UI of the app displays a graphic of the
parking lot (with a menu to select which lot), and then fills vacant spots blue and
occupied spots red

23

Figure 4.3.1: Application update

24

4.4 Small Scale Model

Due to the lack of HPEC rooftop access, the mockup system was designed as a small-scale
wooden building (figure.4.1) to set the Jetson Nano on top of, overlooking a print out of lot-D
(figure-4.4.2, & figure-4.4.3) at the University of Michigan-Dearborn's campus.

Figure-4.4.1: Camera and Jetson Nano mounted on top of HPEC building (mockup)

Figure-4.4.2: Parking Lot-D Animated Image Figure-4.4.3: Animated Image Print (3’x4’)

25

The following two figures provide the final testing environment setup for this project.

Figure-4.4.4: Full System (top view) Figure-4.4.5: Full System (side view)

26

5. System Testing

5.1 Testing Procedures

The following sections outline the testing methods for the various tests that had to be run on

the system.

5.1.1 Computer Vision Module Test Plan

5.1.1.CV_F1. Image Processing Pipeline: Requirement 3.4.1, 3.4.2, 3.4.3, 3.4.4

5.1.1.CV_F1.1. Test Case Requirement:
3.4 The system must be accurate in counting parking spots.
3.4.1 The Computer Vision Module must infer the correct state 75% of the time.

(P(Calculated == Actual) ≥ 75%).
3.4.2 If a vehicle is parked in multiple parking spaces, the inference must classify all spaces as

occupied.
3.4.3 The inference must be run at a rate of at least once a minute.

(inference update rate ≥ .016Hz)
3.4.4 The inference must classify small pedestrian vehicles such as motorcycles as being

occupied spaces. (Edge-case classification > 50%)

Figure 5.1.1.CV_F1.1: Test case setup

27

5.1.1.CV_F1.2. Test Case Description:
The image pipeline test is targeted at the inference behavior of the computer vision module. This test
will exercise the model using a varied set of input data to evaluate the performance of the computer
inference. This will be done indoors because rooftop access is still out of reach for the project group.

5.1.1.CV_F1.3. Test Environment and Conditions:
Location: Garage.
Environment: Lab Setting

● well lit, with lighting changing overtime.
● No specific temperature, humidity, wind, shock, or vibration parameters.
● Imaging angle over the lot will be consistent from inference to inference.
● The Computer vision module will not be attached to the ParkSmart Networking component.

5.1.1.CV_F1.4. Input Data Set:
The input data for this test is the pictures that the camera captures while overlooking the small scale
model. The data will be collected during the run of the test. Lighting conditions and the states of the
parking lot will be changed during the runtime of the test to provide a good set of sample data for
testing the neural inference.

5.1.1.CV_F1.5. Expected Data Values and Results:

The system’s output should be a list of occupied and vacant parking spaces, with 3 out of every 4 frames
being classified accurately.

CV_F1

Classification Accuracy (%) Accuracy will be measured by counting the number
of inferences with all spots classified correctly
compared to the total number of samples.

Excellent: >95%
Good: >90%
FAIL : <90%

Inference Rate (Hz) The rate at which the inference is able to run.

Excellent: < 60s
Good: < 90s
FAIL: >90s

Edge Case Classification (%) Edge conditions such as double parked cars or
motorbikes are classified correctly > 50% of the time.

Excellent: >75%
Good: >50%
FAIL: <50%

28

1.4.CV_F1.6. Test Procedure:

Steps:
1. Setup poster on the ground and align mock building with the poster
2. Power on the Jetson Nano and open relevant file folders in terminal
3. Plug in HDMI connection to display feedback and execute program
4. Monitor the parking space line parsing, and make sure there are no outliers
5. If collecting data: randomize cars on poster board and store image frames
6. If running trained network: run finalized image processing pipeline, shuffle hot-wheels cars

around the board, and monitor CNN inferencing
7. End test after 1000 frames are evaluated

Data Collection:

● Pass/Fail based on accuracy
○ Logging accuracy of each frame processed

● Images collected for training
○ Moving hot wheels cars around on poster board

29

5.1.2 Network Module Test Plan

The network module must be tested to ensure that data is collected and distributed in an

appropriate matter. The focus on these tests will be to test the functions of the server as well as

the network infrastructure to meet the project needs. Some testing was done on campus

before the shutdown associated with COVID-19, and was carried out in person. Later tests had

to be done remotely. VPN access and video conferencing has largely negated the now-remote

nature of network testing, with the only minor exception being connection speeds. This is due

to the added layer of the VPN with every request, however it was determined that this was still

sufficient to meet requirements (as reported below).

Before breaking from in-person meetings, connectivity to the university wireless network was

tested (Test Case N_F1). After classes were moved to online, Test cases N_F2 (Server API Calls)

and N_S1 (Connectivity and Error Reporting) were tested. Using VPN.

5.1.2.N_F1. Computer Vision Connectivity: Requirement 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6

The aim of this test is to test the connection from the computer vision module to the

central ParkSmart server. This is to test that a working data link has been established and that

the product can communicate as designed.

5.1.2.N_F1.1. Test Case Requirements:

3.3.1 The network must achieve a throughput of at least 3.2 MBit/s from the
Computer Vision Module to the server to report data. This number is based on
the expected camera update rate layed out in requirement 3.1.3 and the
resolution of an image. (throughput ≥ 3.2MBit/s).

3.3.2 The network must guarantee packet arrivals to the destination network
(TCP).

3.3.3 The system must interface to existing wireless topography. (∃ IEEE 802.11ac
compatibility).

3.3.4 External clients must have remote access to the server via network.
(∃ external network interface).

3.3.5 Any clients connecting to the server must be authenticated
(∃ Client Authentication).

3.3.6 Any confidential or private data must be encrypted (∃ Link Encryption)

30

Figure 5.1.2.N_F1: Network Connectivity

5.1.2.N_F1.2. Test Case Description:
One of the most crucial parts of the entire system functioning is the existence of
communication between the three modules. This communication is bundled with the backend
server in the network module. The main purpose of the test is to ensure that the computer
vision module will have access to the network and network resources, as well as having remote
access to the computer vision module, in the case that it was placed on the roof.

5.1.2.N_F1.3. Test Environment and Conditions:
Location: IAVS VPN
Environment: Indoor, Lab setting where the device can be closely monitored throughout the
test.
Network Hostname: umd-parksmart-01.umd.umich.edu (assigned hostname from ITS)
IP Address: 141.215.192.40

31

SSH (secure shell) used to test remote access.
Wireshark used to ensure that packets are encrypted over this remote administration link.
Non-administration traffic is not sensitive and hence has no need for encryption.
SCP (secure copy) used to transfer files and test transfer speeds.

5.1.2.N_F1.4. Input Data Set:
The input dataset consists of the University internet Infrastructure, including routers, DNS
servers, and access to the outside internet.

5.1.2.N_F1.5. Expected Data Values and Results:

N_F1

Device is able to
connect and
authenticate on
UMD-Secure
(true/false, Received
IP address)

Checked in the connection
information of the settings on the
Jetson board

TCP Protocol in use
(true/false)

Use of wireshark to examine the
protocols that are being used by the
Jetson.

Remote Access via
SSH and encrypted,
and passwords are
used for
authentication
(true/false)

Ensure access remotely using SSH
and is authenticated

Ensure connection is encrypted with
wireshark

Data Transfer Rate
(MBit/s)

Use of SCP to copy a file and record
the reported transfer speed.

Expected ranges:
Excellent: 3.2MBit/s+
Good: 2.6-3.2MBit/s
OK: 2.0-2.6MBit/s
FAIL: < 2MBit/s

32

5.1.2.N_F1.6. Test Procedure:
Steps:

1. Boot the Jetson Nano using NVidia Image and networking card installed
2. Connect to UMD-Secure using network-manager
3. Verify VPN access to University from jetson
4. Open Chromium on the Jetson to confirm access to google.com
5. “ssh jetson@umd-parksmart-01.umd.umich.edu” from another PC to confirm ssh

remote access.
6. Note that SSH asks to authenticate the connection to the server
7. Use SCP to copy a file from the other PC to the jetson and note the data rate.

Data Collection:

● Network Speed
● Several checks to ensure features are enabled/disabled
● Assigned IP address and Hostname

5.1.2.N_F2. Database Retrieval and Commit: Requirement 3.5.1, 3.3.7, 3.3.8

5.1.2.N_F2.1. Test Case Requirement:

3.3.7 The web server shall communicate with clients over apis functioning on the http
protocol (api protocol == http)

3.3.8 The web server must log information regarding parking to a database for
historical and searchable data.

3.5.1 The web/app interface must service requests at all times of day.

33

mailto:jetson@umd-parksmart-01.umd.umich.edu

Figure 5.1.2.N_F2: Database Interface

5.1.2.N_F2.2. Test Case Description:
The second main function of the networking module is to handle and store data reported from
clients, as well as send responses to users about the current state of the database. This test
aims to evaluate the function of the calls to the server to store and retrieve data from the
parking lot database.

5.1.2.N_F2.3. Test Environment and Conditions:
Location: On Campus VPN
Environment: Python, Java, and Javascript http request libraries
Network Address: lamp.engin.umd.umich.edu/~bbrauchl/api/<api name>.php
SSH (secure shell) used to access the server.
Custom APIs.

5.1.2.N_F2.4. Input Data Set:

34

Manually generated data corresponding to how data will authentically be sent by the computer
vision module. This data will then be pulled by the database to check that the data is identical
to the data that was committed.

5.1.2.N_F2.5. Expected Data Values and Results:

N_F2

HTTP and TCP are
used in for the
underlying
protocols during
the web API calls
(true/false)

Use Wireshark to confirm the
protocol underlying the web api calls.

Pass: HTTP and TCP
FAIL: Any other protocol

Requests report
the current state
of the database,
as compared to a
known update (%
correlation)

Push and then pull a known database
to/from the database to ensure that
they are identical.

Result Ranges:
Excellent: 100%
Passing 99-100%
FAIL < 99%

Access to the
server (%)

Try the commands repeatedly at
times of high and low network traffic
to check the access to the server,
over a course of 8 hours

Result Ranges:
Excellent: 100%
Passing 99-100%
FAIL < 99%

5.1.2.N_F2.6. Test Procedure:
Steps:

1. Establish a web page on the server
2. Using custom Python and PHP interfaces, perform an update to the server database

using the ParkSmart.update() function. The update will show up in the webpage
mentioned above in order to to pass this test.

35

3. Calling a second API from python, load the current status of the database back to the
Jetson. This will be compared to the current state of the database to confirm that the
fetch was successful.

4. Repeat steps 2 and 3 several times during the day to ensure that access remains
functional.

5. A python script will be run to test accesses to the server periodically for an extended
period of time (4 hours)

Data Collection:

● State of current database
● State of database after update
● State of pulled data
● Percent of the time that access is available

5.1.2.N_S1. Connection Error Reporting: Requirement 3.5.2, 3.5.2.1, 3.5.2.2, 3.5.2.3

5.1.2.N_S1.1. Test Case Requirement:

3.5.2 The web/app interface must report errors and warnings to the user.
3.5.2.1 The web/app interface must report Computer Vision Module Dropout errors
3.5.2.2 The web/app interface must report visibility warnings
3.5.2.3 The web/app interface must report invalid API calls as the response to the html
requests.

36

Figure 5.1.2.N_S1: Fault Injections

5.1.2.N_S1.2. Test Case Description:
Errors will inevitably happen in any system. The main areas that this system can experience
errors are in the following forms:

1. Computer Vision Module Dropout, where a Computer Vision module drops out of the
network

2. Visibility issues with weather
3. Improper usage by users

This test is designed to observe the network response to these events

5.1.2.N_S1.3. Test Environment and Conditions:
Location: On Campus VPN connection
Environment: Web Browser
Network Address: lamp.engin.umd.umich.edu/~bbrauchl/build/

5.1.2.N_S1.4. Input Data Set:
For this test, faults will be manually inserted into the system by manually stopping a producer
of parking lot data, intentionally calling API calls incorrectly, and spoofing weather API
responses to mimic poor conditions. These will all act as test vectors to observe the response of
the system.

37

5.1.2.N_S1.5. Expected Data Values and Results:

N_S1

Poor Weather
Conditions are
reported in the
user interface
(true/false)

When the visibility is low, or there is
extreme weather, the results of the
inferences will be less accurate. This
warning should be reported to any
users of the system.

Computer Vision
Module Dropout is
detected. (s)

In the case where a computer vision
module drops out of the network,
and the database contains old data,
that data should not be reported to
users. This will be measured in
seconds from when the module is
dropped out.

Since parking spaces take some time
to update, the following conditions
have been defined to avoid heavy
bandwidth:

Excellent: Dropouts are detected in <
3 minutes (120 seconds)
Good: Dropouts are detected in < 5
minutes (300 seconds)
FAIL: Dropouts are detected in > 5
minutes

Programming the
API with incorrect
access reports the
error.

When the server API is incorrectly
called, the response will contain
information about the nature of the
error and potential steps to resolve.

5.1.2.N_S1.6. Test Procedure:
Steps:

1. Push a single update
2. Use Python to poll the api function and time how long the data is reported after the

update
3. Next, test the web-page in rainy or foggy conditions.

38

4. Reload the ParkSmart Website and look for a visibility warning.
5. Next, test the Computer Vision Modules with incorrect arguments to the web API
6. Check the response from the web server to look for an error message.

Data Collection:

● State of current database
● State of database after improper update
● Time taken for the database to recognize a Computer Vision Module drop out

39

5.1.3 User Application Module Test Plan

The user application module must be able to pull data from the server and accurately record

the date on the user interface. These tests are meant to test the overall function of the

application as well as the accuracy of the data to which it is reporting to users. Due to the

school shutdown some features and tests had to be cut short or had to be limited and done

remotely as they needed the VPN service in order to receive data from the server. Due to this

these tests had to be done via emulation and not directly on hardware.

5.1.3.A_F1. Data Reporting: Requirement 3.5.1,3.5.2

The main focus of this requirement is to test the ability of the app to report data efficiently and

accurately to the user.

Figure 5.1.3.A_F1: Data Reporting to user interface

5.1.3.A_F1. Test Case Requirement:
3.5.1 The app/web interface must service requests at all times of the day
3.5.2 The app/web interface must report problems to user.

5.1.3.A_F1. Test Procedure:

Steps:

1. The application will be started on an android device and on the school’s wireless
network.

40

2. The application will be provided with data (either real or fake) in JSON data containing
parking data.

3. The data will be parsed by the application and written to the display.
4. If the application output interface will be compared to the input data to verify correctness.
5. Next the data will be removed, and the same trial will be run.
6. The application must report a data error to pass testing.
7. Last, data will be provided that has a timestamp that is out of valid range.
8. The Application must report a data invalid warning to pass testing.

A_F1

mapping of spots to
image

Parking spots are expected to be colored
such that spots marked as vacant are
colored green, and spots marked as
occupied are marked red. Yellow is to
represent invalid data.

Excellent: 100% of the parking spaces
are colored red, green, or yellow.

FAIL: <100% of parking spaces are
colored.

5.1.3.A_S1. Distracted Driver: Requirement 3.5.2,3.5.3

5.1.3.A_S1.1. Test Case Requirement:
3.5 The system must distribute information to users.
3.5.3 The app interface must provide warnings to users who are likely driving
(warnings when speed > 10mph)

5.1.3.A_S1.2. Test Environment and Conditions:

Location: On campus
Environment: Inside a moving vehicle

● Latest application version installed
● No specific temperature, humidity, wind, shock, or vibration parameters.

5.1.3.A_S1.3. Input Data Set:

Inputs include locational and acceleration data of the phone’s internal sensors, purposely set to
the case in which the app should report warnings and errors.

5.1.3.A_S1.4. Expected data values and results:

The application should display a warning when the driver exceeds 10mph. It should not allow
the user to navigate the app without dismissing the warning.

41

A_S1

User Notifications -
Android App

The android app is expected to show a
notification/warning when the user may
be driving. The application should also
provide notifications in the case of poor
weather or low visibility to warn users of
potential poor results.

Excellent - All warnings/notifications will
be displayed in the Android app given
the proper conditions (weather,
movement, etc).

Fail - warnings and notifications are not
displayed in the Android app.

User Notifications -
Web App

The web application should provide
notifications in the case of poor weather
or low visibility to warn users of
potential poor results.

Excellent - All warnings/notifications will
be displayed in the Web App given the
proper conditions (weather, etc).

Fail - warnings and notifications are not
displayed in the Web App.

42

5.1.4. Full System Testing

5.1.4.S_F1. System Output: Requirement 3.4

5.1.4.S_F1.1. Test Case Requirement:
3.4 The system must be accurate in counting parking spots.
3.4.1 The Computer Vision Module must infer the correct state 75% of the time.
(P(Calculated == Actual) ≥ 75%).
3.4.2 If a vehicle is parked in multiple parking spaces, the inference must classify all spaces as
occupied.
3.4.3 The inference must be run at a rate of at least once a minute. (inference update rate ≥
.016Hz)

5.1.4.S_F1.2. Test Environment and Conditions:
Location: On campus Remote via VPN
Environment: Lab Setting with Scale Model Parking Lot

● well lit, with lighting changing overtime
● No specific temperature, humidity, wind, shock, or vibration parameters.

5.1.4.S_F1.3. Input Data Set:

The input data for this test is the pictures that the camera captures while overlooking the small
scale model. The inputs to the system will consist of the input frames from the Computer Vision
module, as well as requests from users and responses from external APIs.

43

Figure 5.1.4.S_F1: System Module Diagram

5.1.4.S_F1.4. Expected data values and results:

The system’s output should be a list of occupied and vacant parking spaces, with 3 out of every 4
frames being 100% accurate. The system should be able to identify spots as occupied if they are
filled by motorcycles, double parked cars, etc.

S_F1

Parking lot status The application is expected to report the
number of cars that are currently in the
parking lot model as well as their
locations. 3 out of 4 updates should be
100% correct.

User Notifications The app should also notify the user if
there are complications with the system,
such as poor weather that will affect the
accuracy of the predictions.

44

5.1.4.S_F1.5. Test Procedure:

Steps:

1. The entire system will be assembled along with a scale parking lot model in the IAVS Roderick’s
House.

2. Model cars are placed manually and the system is allowed time to update.
3. The output is compared to the known input to assess the correctness of the model.
4. Repeat for several trials with factors like small vehicles, motorbikes, and cars in more than one

spot.

Data Collection:

● Pass/Fail based on accuracy
○ Log of accuracy of each frame processed

● Images collected for training

5.1.4.S_S1. System Update Latency: Requirement 3.4

5.1.4.S_S1.1. Test Case Description:

3.4 The system must be accurate in counting parking spots.
3.4.3 The inference must be run at a rate of at least once a minute. (inference update rate ≥
.016Hz)

5.1.4.S_S1.2. Test Environment and Conditions:

Location: On campus
Environment: Lab Setting with Scale Model Parking Lot

● well lit, with lighting changing overtime
● timer available, to measure total update time
● No specific temperature, humidity, wind, shock, or vibration parameters.

5.1.4.S_S1.3. Input Data Set:

The input data for this test is the timestamp of a given frame, taken of the small scale parking lot
model.

5.1.4.S_S1.4. Expected data values and results:

The system should process the frame, decide on vacancies for each spot, send this vacancy list
to the server, pull this server data down to the app, and display it properly within the app; this
process should take 60 seconds or less.

45

S_S1

Update Rate (hz) The rate of updates making it to the
application will be measured. It will be
measured from the application

Update Latency (s) The amount of time it takes the system
to make an inference, publish that data,
and the data to be available on the
application.

5.1.4.S_S1.5. Test Procedure:

Steps:

1. The Computer vision software will be started with an empty database.
2. The web page will be loaded after exactly 1 minute.
3. If data loads properly, then the system passes the latency test.

Data Collection:

● Pass/Fail based on timing
○ Log of measured times for each frame to update the app recorded.

● If needed for troubleshooting, time measurement of each step will be recorded.

46

5.2 Testing Results

5.2.1 Computer Vision Module Test Results

5.2.1.1 Camera Calibration and Perspective Transformation

The following image (figure-5.2.1.1) shows the result of the perspective transformation

program running off of the Jetson Nano. The image is of the physical parking lot board, and is

taken from a near 45-degree angle. Regardless, the image appears as though it is taken from a

bird’s eye view as a result of the homography matrix used for the perspective transform.

Figure 5.2.1.1: Perspective Transform Test Result

5.2.1.2 Canny Edge Detection

Next, canny edge detection was used to the transformed image, as shown in figure-5.2.1.2.

Figure 5.2.1.2: Canny Edge Detection Test Result

47

5.2.1.3 Parsing of Parking Space Clusters

Figure-5.2.1.3 illustrates the parsed region-of-interest image from the Jetson Nano, as it parses

up the individual clusters of the parking lot. Clusters 0-4 (left to right respectively) are to be fed

into the neural network respectively so that the network is making predictions sequentially and

not bottlenecked by updating the entire parking lot list at once.

Figure 5.2.1.3: Parsed Camera Pipeline Test Result

5.2.1.4 Hough Line Transform

Upon parsing the camera feed, the hough line transform is shown (figure-5.2.1.4) to have

parsed the horizontal parking space lines. These lines are averaged out and stored into a

parking space dictionary representative of the spaces in each cluster.

Figure 5.2.1.4: Hough Line Transform Test Result

48

5.2.1.5 Parking Space Parsing

Here is the resulting image of the parking space dictionary lines being drawn out, after parsing

the spaces via the hough line transform function. These spaces hold unique spot identifiers in

the parking space dictionary, giving the corner pixel point locations of each bounding box.

Figure 5.2.1.5: Parsed Parking Space Dictionary Test Result

5.2.1.6 Data Collection

The following images show examples of the data gathered for training the network.

Figure 5.2.1.6: Data Collection of Vacant and Occupied Parking Spaces

49

5.2.1.7 Convolutional Neural Network Training

The following figure illustrates the convolutional neural network architecture used for this

project. The input image is a 64x64 input image, followed by a series of convolution, activation,

pooling and dropout layers. Lastly, the data is flattened and passed through the resulting dense

layers before making a prediction with two classifications: occupied, and vacant.

Figure 5.2.1.7-1: Convolutional Neural Network Summary

50

The next image below shows the performance of the network during training.

Figure 5.2.1.7-2: Convolutional Neural Network Training Performance

The next two figures illustrate the training performance as it relates to the training accuracy

(figure-5.2.1.7-3), and the cross entropy loss (figure-5.2.1.7-4).

Figure 5.2.1.7-3: Convolutional Neural Network Training Accuracy Graph

51

Figure 5.2.1.7-4: Convolutional Neural Network Training Loss Graph

5.2.1.8 Convolutional Neural Network Predictions

This last figure presents the trained network making predictions on a test image.

Figure 5.2.1.8-1: Convolutional Neural Network Predictions Result

52

Testing Results:

CV_F1

Classification
Accuracy (%)

Excellent Accuracy was measured to be well over 95% given good
lighting conditions

Inference Rate (Hz) Excellent The interface from the jetson board was updated at a
period of about 20s or about 0.05 Hz. This is well above
the requirement of 0.016 Hz.

Edge Case
Classification (%)

Excellent Edge conditions such as double parked cars or motorbikes
are classified correctly > 50% of the time.

In edge cases where cars are double parked, the system
correctly detects both spaces more than 80% of the time.

Figure 5.2.1.8-2: Testing Result Classifications

53

5.2.2 Network Module Test Results

5.2.2.N_F1 Connectivity Testing

VPN was set up using the information here:

https://umdearborn.teamdynamix.com/TDClient/2019/Portal/KB/ArticleDet?ID=43009

Figure 5.2.2.N_F1.1: Received IP address on the Jetson (Requirement 3.3.3)

Viewing the output, above it can be seen that the network connection, and the VPN

connection were both successful. However, the assigned IP address is incorrect. This is due to

some minor complications using the university VPN. When tested physically on campus the

Jetson received the correct IP of 141.215.192.40. Due to the current COVID-19 situation, the

configuration with a VPN is considered passing, and meets the criteria for requirement 3.3.3.

Next, one of the demo update scripts was run from Bryan’s PC while monitoring the

network interface using Wireshark:

54

https://umdearborn.teamdynamix.com/TDClient/2019/Portal/KB/ArticleDet?ID=43009

Figure 5.2.2.N_F1.2: Python Request over TCP (Requirement 3.3.2)

The output of wireshark shows a post request using update data, and as expected all

packages are using the TCP protocol. (HTTP is a higher level protocol that uses TCP). Therefore

the TCP Protocol usage is passing, and the network module meets the criteria for requirement

3.3.2.

Next, SSH for remote access will be tested. Due to the lack of assigned static IP, This test

must also be modified slightly due to lack of access on campus. A home network will be used

instead along with mdns to connect to the board via hostname. This means that the hostname

used for the test setup is “umd-parksmart-02.local” rather than

“umd-parksmart-01.umd.umich.edu”

55

Figure 5.2.2.N_F1.3: Remote SSH access to Jetson (Requirements 3.3.4, 3.3.5)

From the terminal output, it is clear that ssh access to the jetson board is working over

the home network. The login process also asks for a password, meeting the requirement for

security. A quick look at wireshark shows that this link is encrypted and secure:

56

Figure 5.2.2.N_F1.4: Wireshark output of SSH connection (Requirement 3.3.6)

With the results shown above, the Remote access component of the networking

functional test 1 is passing. The network module meets the criteria for requirements 3.3.4,

3.3.5, and 3.3.6.

The final component to test is connection speed. This is tested in 2 ways: Using a

network speed test provided by google, and a metric from a SCP transfer. The speed test is

done by accessing it in the web browser:

57

Figure 5.2.2.N_F1.5: Internet speed test (Requirement 3.3.1)

These numbers are well beyond passing for the specification set out in the

requirements. However, the SCP testing tells a somewhat different story. This test was done by

using a large file and transferring it via SCP. The results show a SCP transfer speed of

approximately 2.9 MBit/s.

Figure 5.3.3.N_F1.6 SCP transfer to Jetson Nano (Requirement 3.3.1)

 The data speed requirement of 3.2MBit/s was set as highly ambitious as it was our

maximum foreseeable throughput, including video streaming from the device which was being

considered at the time of writing requirements. However, the system only needs a fraction of

that speed when running in normal operation modes. For normal operation mode, 2.9MBit/s is

suitable. This test is Passed with a rating of “Good”. It would still be possible to improve this

rating to “Excellent” by finding ways to increase network throughput. Traces to Requirement

3.3.1.

58

Test Results:

N_F1

Device is able to connect
and authenticate on
UMD-Secure (true/false,
Received IP address)

Good The Jetson Nano does not receive static IP off
campus, and instead received 141.215.95.237 in the
trial. This has been deemed GOOD because the
Jetson is still on the University network and this
configuration is workable for a demo.

TCP Protocol in use
(true/false)

Excellent Wireshark indicates that TCP is in use.

Remote Access via SSH
and encrypted, and
passwords are used for
authentication
(true/false)

Excellent SSH access is working and Wireshark indicates that
administration is encrypted and password
protected.

Data Transfer Rate
(MBit/s)

Good Measured well beyond requirements (> 100
MBit/s). SCP transfers are placed in the “good”
category measured at approximently 2.9 MBit/s.
This is slightly below the ambitious goal set by the
requirements, but will likely be enough for this
system.

5.2.2.N_F2 Database Retrieval and Commit

The database commit and retrieval can both be tested in the same routine by

committing data to the database, and then reading that data back. Then check the correlation

between the data that was sent to the server and the data that was received. The second

component is testing when the server is accessible. This is done using an extended test of 12

hours, sending periodic requests to check that the server is available at a given time. Both of

these are done in the test script N_F2.py under the demos folder on github.

59

Figure 5.2.2.N_F2.1: Output of Python Testing script testing Database consistency

(Requirement 3.3.7, 3.3.8)

Figure 5.2.2.N_F2.2: Output of Python Testing script testing Database Accessibility

(Requirement 3.3.8, 3.5.1)

The same behavior can be checked using the web front end as well.

60

Figure 5.2.2.N_F2.3: Database functional displayed as web-application output (Requirement

3.3.7, 3.3.8, 3.5.1)

Finally, using wireshark again can confirm that the HTTP protocol is in use by capturing

the network traffic while running the test script.

Figure 5.2.2.N_F2.4: TCP and HTTP protocols during web api calls (Requirement 3.3.7)

61

This output shows that not only the fetch and receive operations function but the

javascript web application hooks into the database and can start performing updates. Meaning

that this test is a PASS, and traces to requirement 3.3.7, 3.3.8, and 3.5.1.

Test Results:

N_F2

HTTP and TCP are
used in for the
underlying protocols
during the web API
calls (true/false)

Excellent Using wireshark it can be
shown that the system is
using TCP for api packets,
meaning that they will be
reported on errors.

State of MySQL
database (%
correlation)

Excellent Passes with a Excellent
correlation of 100%

Access to the server
(%)

Excellent Passes with an Excellent
access of 100% in the
8-hour trial.

5.2.2.N_S1 Connection Error Reporting

One safety concern with the web application and the network submodule overall is the

way that errors are handled. This test case covers the condition when weather conditions are

poor and 2 error conditions for the system: The computer vision module dropping out of the

system and the programming API’s being used in the wrong way.

All of these cases were considered in the design of the system. The system should check

the weather conditions and report to the user if there are any concerns with the accuracy of

the image output due to weather. This is done using a javascript alert that is triggered by the

contents of a request to openweathermap.org.

The database should also be smart enough to recognize stale data, namely data that has

not been updated in a significant amount of time. This is done using a SQLupdate call to expire

data in the database before updating with new data. Finally, the web api code should be

62

resistant to common errors and report feedback to help any programmer trying to interface to

the system.

Figure 5.2.2.N_S1.1: Expired data and visibility warning shown on the web interface

To the Web interface, “expired data” looks the same as “no data” This is intentional

behavior. The above picture also shows a visibility error, which will only appear if the app

deems the current weather conditions non-ideal.

Measuring the dropout detection time and the response to improper API calls is a job

that is greatly simplified using python. The python script N_S1.py runs both of these tests and is

located in the demos folder on github.

63

Figure 5.2.2.N_S1.2: Section of output testing Dropout detection and Pull API inputs

Figure 5.2.2.N_S1.3: Section of output testing inputs to update api function

These tests confirm the system is resilient and can help report mistakes and issues to

the end user. Every test case was met with either a string saying that the request was successful

or a JSON string indicating the SQL issue with the request. In all cases, this test is a PASS

Test Results:

N_S1

Poor Weather
Conditions are
reported in the
user interface
(true/false)

Excellent The web interface will show
javascript pop-ups when the
weather conditions are
suboptimal

64

Computer Vision
Module Dropout
is detected. (s)

Excellent Computer Vision dropouts are
detected in 119-121 seconds.
Which is less than 180

Programming the
API with incorrect
access reports
the error.

Excellent Every improper call gave
reference to the first element
that was incorrect in the request
struction.

65

5.2.3 User Application Module Test Results

5.2.3.A_F1 Data Reporting Testing

This section outlines the testing of the web and android applications. Below is the

output exercised with random data from the web application. This shows that the parking

spaces are colored either red (occupied) or green (vacant) depending on the data from the

server. Then, the opacity of the background is set based on the confidence value reported from

the server. For predictions that are more confident, the space is shaded in with a more solid

color of red/green. Inspecting the data and comparing it with the terminal output shows that

there is a direct correlation between the current data in the database and the reported data in

the web interface.

Figure 5.2.3.A_F1.1: Predictions displayed as web-application output (Requirement 3.3.7,

3.3.8, 3.5.1)

The android application also produces the same behavior, although in a slightly different

format:

66

Figure 5.2.3.A_F1.2 Android App Interface

Figure 5.2.3.A_F1.1 Application Interface

reporting spots taken

Test Results:

A_F1

Mapping of spots
to image

Excellent Parking spaces are reported correctly to
the android app and to the web
interface.

5.2.3.A_S1 Distracted Driver and Warnings Testing

There is a 3rd option for the coloring of the parking spaces: Invalid (yellow). This color is

displayed when there is no data received from the database. This either means that the data

does not exist in the database or that the data has expired and is no longer valid. The front end

javascript takes care of updating by polling the server and requesting new data. One final

aspect is the weather notifications. The web application shows a warning when the visibility is

67

below a threshold and/or when the weather conditions are not clear. This provides additional

feedback to the user as to potential inaccuracies in the reported data in a system that has been

deployed.

Figure 5.2.3.A_F1.2: Expired data and visibility warning shown on the web interface

To the Web interface, “expired data” looks the same as “no data” This is intentional

behavior. The above picture also shows a visibility error, which will only appear if the app

deems the current weather conditions non-ideal.

Next, a pop-up has been designed to warn the driver if the current drive speed exceeds

10 MPH.

68

Figure 5.2.3.A_S1 Distracted Driver Popup

Currently, this pop-up exists only as an android activity, and does not have proper

implementation in the android code, due to time limitations and setbacks that have affected

the project.

 Test Results:

A_S1

User Notifications -
Android App

- Due to lack of time, this feature has yet to be implemented.
We are confident that it could be easily added to the app, but
ran out of time to implement.

User Notifications -
Web App

Good The web application reports warnings in the case of poor
visibility or poor weather conditions. However, this is not
fine-tuned to be reflective of the system’s performance in
those weather conditions.

69

5.2.4 Full System Test Results

5.2.4.S_F1 System Output Testing

The full system test starts with an empty lot, running the CNN, and looking at the camera

pipeline feed and website as they should both update in real-time upon prediction updates. In

the initial case, parking spaces begin as unclassified, and invalid. The computer vision module

has not yet run any classifications, and the web interface reports all parking spaces as “invalid”

by coloring them yellow. This is an example of the web interface reporting errors to the user. It

would not be desirable to have the web interface report data before the computer vision

module has a chance to update. The same is true in the case where the computer module does

not provide data for more than 2 minutes.

Figure 5.2.4.1: Real-Time Prediction Results on Camera Pipeline (LHS) and Website (RHS)

Here is a picture taken of the physical parking lot board with hot-wheels cars on it for testing.

70

Figure 5.2.4.2: Physical Parking Lot Board

Following the testing environment setup, here is the real-time update prediction results,
corresponding to the hot-wheels cars placed on the board. The camera pipeline predictions
feed (LHS) updates cluster by cluster as a new image frame is fed into the network. As shown by
the status updates in figure-5.2.4.4, upon every four cluster updates (completing the cycle of
predictions for the entire parking lot), the program then pushes the status updates to the
server where the website image is then updated to represent the changes in the parking space
predictions dictionary.

Figure 5.2.4.3: Real-Time Camera Pipeline and Website Feed Testing Results

71

Here is a snapshot of the status updates for the cluster prediction results and server file
.

Figure 5.2.4.4: Real-Time Cluster Predictions Update Status

By inspection, we can see that the output of the system exactly matches the input image.
Repeating this test for several iterations shows that the output accuracy in this controlled test
environment is quite remarkable, as it produces the correct macro state of the parking lot >
97% of the time.

S_F1

Parking lot status Excellent Macro parking lot accuracy: >97%

User Notifications Good The web app and android app both report on
invalid data, and the web application reports on
poor weather conditions. However the poor
weather conditions notifications are sometimes
inaccurate.

5.2.4.S_S1 System Latency Testing

Performing System Latency tests were performed using a simple stopwatch. Time

started when the computer vision module reported that an input frame had been captured,

and was stopped when the update data appeared in the web interface. This test was repeated

multiple times and averaged to get the average latency of the system.

72

Update frequency is measured slightly differently. This must be measured at the same

point in an update cycle between consecutive cycles. This was done using the database

timestamp system that was put into place, measuring the time difference of consecutive

updates when the camera module was running in continuous mode.

S_S1

Update Rate (hz) Excellent The update frequency of the entire system is
on the order of 20s

Update Latency (s) Excellent The update latency is around 28 sec

73

6. Budget

module no Item Vendor Model/Part No.
Unit
Cost

Qty
Sub

Total
 Cost

Vision 1 Wide Angle Camera
Waveshar
e IMX219-160 Camera 30 1 30

Vision 2 microcomputer board NVIDIA Jetson Nano 100 1 100

Vision 3 256 GB MicroSD Amazon MB-ME256GA 40 1 40

Network 4 Jetson NIC
Waveshar
e AC8625 NIC 25 1 25

Enclosure 5 Enclosure: home built 1

Enclosure 6 Battery Batteries+ Duracell SLI31MDC 122 1 122

Enclosure 7 Power Regulator Amazon MonkeyJack Buck Converter 13 1 13
Total
Cost
Estimate
s 340

Table-6: Project Budget (updated: 4/01/20)

74

7. Master Schedule

Figure-8: Master Schedule (updated: 4/01/20)

7.1 Project Status

module Comments Status

Computer Vision /
Image Processing

Got CV module trained and running, able to communicate
with the networking server in near real-time performance.

Complete

Network Server Got an advisor (Professor Watta) willing to “sponsor” us
and our server from him

Complete

Physical Structure Near completion; buck converter needs to be remounted Complete

Android Application Building blocks are complete, needs a nice integration 80%

Table 7.1: Project Status (updated: 4/01/20)

75

8. Conclusion

The original goal of this project was to create a system that could identify vacant and

occupied parking spaces, given a camera positioned above a parking lot. Additionally, as last

semester went on, another goal was added to include an infrastructure for gathering the

vacancy data over the internet, and reporting this data to a user. We have Largely accomplished

these goals and have been very successful. There have been some hiccups: the original plan was

to use a real parking lot at the university - positioning a camera to overlook it - but due to

logistical and safety issues we had to create a small scale version of a parking lot to use. Also,

coronavirus had a big impact on our project and the ability to continue development of certain

areas of the build. But despite these, the main goal has been achieved; the system described

above can identify vacancies in a small scale test lot. In addition, the system is able to

communicate with the server we have set up at the university, which in turn is capable of both

updating a web interface displaying the vacancy data as well as forwarding this data to the app

when requested.

Overall, our team has learned a lot through this two semester design course. There was

a huge amount of technical development in each of the team members, as well as exposure to

some of the non-technical aspects of design and test that exist in the industry. We recognize

that this experience is invaluable in our development as engineers. Though we will likely never

work in this senior design group again, the experience provides a healthy transition into

industry as it mirrors the projects we will complete in our careers.

76

