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Executive Summary 

This report goes in depth about a mathematical algorithm called Principal Component Analysis 

(PCA), and its relevance to face classification applications. It is broken up into three sections. 

The first provides insight into what PCA is, and why it is used for classifications within data sets. 

The following section details an abstraction of the mathematics required for implementation of 

the PCA approach. The final section then examines a scenario in which PCA is used, to show 

how it is implemented, and what the results look like regarding face classification. 

 

The primary purpose of this report is to summarize how to implement a fundamental PCA 

algorithm structure. This algorithm structure serves as the building blocks for scoring the 

variance of multidimensional data sets and classifying these sets from these variance scores. One 

of my biggest takeaways from researching this is how feasible and tangible this seemingly crazy-

complicated idea becomes after mapping out the math behind it. It is my hope that you will feel 

the same way too, after reading this (or at least be able to make sense of it). As the history is still 

young, exciting, and experimental for machine learning through computer vision applications 

such as PCA, it is an advantageous time to jump into it – and this is a perfect place to start.  

 

Given that this subject is extensively complication (to me, at least) and I have not yet had the 

free time I need to learn about more it, this research paper provided the perfect opportunity for 

me to do a deep-dive into the math behind the Principal Component Analysis.   
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Research Paper: 

Principal Component Analysis 

The fundamental subject matter at the core of Principal Component Analysis (PCA) is 

linear algebra, and more specifically, the use of orthogonal matrix transformations. Orthogonal 

transformations will be discussed in a latter section but first, there is a question to be addressed – 

what exactly is PCA? On the highest level of abstraction, PCA is a way to measure the variance 

within and between data sets. Data sets may then be classified with respect to their variance 

scores. Think of this as a compare-and-contrast tool, where PCA can recognize patterns 

associated with data as well as emphasize the anomalies. These anomalies are uncorrelated 

variables (called “principal components”) that best describe the variance, while the correlated 

variables are the overlapping values that create the patterns (Smith, 2012). The key here is that 

once we have established a pattern, we do not care about the redundant variables, only the 

uncorrelated ones. This provides great potential for dimensionality reduction of the data, i.e., 

large amounts of data compression without much sacrifice of useful information. So, why do we 

care? Well, this means that PCA is a powerful technique for real-time image classification.  
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Methodology 

Before getting into the mathematics and implementation of PCA, I would like to note a 

few of the sources that helped facilitate my understanding of PCA and guided my research. 

Perhaps the most all-encompassing short paper was that of the International Journal of Recent 

Trends in Engineering: Facial Recognition using Eigenfaces by PCA (IJRTE, 2009, p.587). This 

paper serves as a great academic publication on the overview of PCA, what eigenfaces are and 

why they are important, and the applications of PCA in facial recognition.  

I also reference A tutorial on Principal Components Analysis (Smith, 2002), for a more 

detailed analysis of the mathematics behind PCA, alongside a concise walkthrough which 

“covers standard deviations, covariance, eigenvectors and eigenvalues” (p.1). This provides 

fantastic step-by-step instructions on how to implement PCA on a set of data in order to analyze 

it. explanation for. For further understanding of the linear algebra required for PCA, specifically 

the orthogonal transformations at the most theoretical level, see Orthogonal Neighborhood 

Preserving Projections: A projection-based dimensionality reduction technique (Kokiopoulou & 

Saad, 2006).  

All these scholarly articles were found published online and their links are noted in the 

Reference List section at the end of this paper. I strongly encourage anyone with serious interest 

or unanswered questions leftover after reading this paper to go to these links. Also, for anyone 

seeking to implement PCA within a program, OpenCV (Open Source Computer Vision, 2015)  is 

a unique and eloquent library, originally developed by Intel, with the tools to do so.  
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Required Mathematics 

Orthogonal Transformations 

In linear algebra, orthogonal (perpendicular) transformations are used to maintain the 

geometric lengths (as vectors) and angles (between vectors) of an object while transforming (via 

rotating or reflecting) the data set. This transformation is used to describe/map out uncorrelated 

or independent values (orthogonal projection) of specific objects within a given data set. Imagine 

a 3D cube held up against a bright light (whose face is perpendicular to the ground), the 2D 

square shadow underneath it (if the side lengths remained the same) is effectively an orthogonal 

projection from the higher-dimensional 3D space to the lower-dimensional 2D space, 

maintaining the angles and lengths of the original object. The key to remember here is that the 

orthogonal transformation (a projection in this case) produces a reduction in dimensionality 

while still being able to describe the shape of the object.   
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Figure-1: Orthogonal Projection Example 

 

For example, the diagram above (figure-1) shows a 2-demensional vector space which 

can be described from two 1-demensional projections. The blue diagonal arrow on the x-y plane 

is the 2D vector, and the red vertical arrow represents it’s 1D projection onto the y-axis while the 

green horizontal arrow represents it’s 1D projection onto the x-axis.  

 
Covariance Matrices 

Matrices present concise representations of elements within a data set (in rows, and 

columns) which allow for simple manipulation (linear transformation) of the data. Much like 

how standard deviation and variance are measurements of 1-deminsional data sets, co-variance 

measurements are used to describe the distribution (relationship) of elements between data sets 

(i.e., the co-variance scores how correlated or uncorrelated variables are across data sets). This 

theory may be scaled to any n-dimensional data set, where “the covariance matrix defines both 

the spread (variance), and the orientation (covariance) of data” (Spruyt, 2014).  
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Eigenvalues & Eigenvectors   

In matrices, eigenvectors and their corresponding eigenvalues are used to express a 

covariance matrix in a unique way. As Spruyt’s (2014) article concisely explains:  

the largest eigenvector of the covariance matrix always points into the direction of the 

largest variance of the data, and the magnitude of this vector equals the corresponding 

eigenvalue. The second largest eigenvector is always orthogonal to the largest 

eigenvector, and points into the direction of the second largest spread of the data. (p.5) 

The next diagram (figure-2) shows a visual representation of eigenvectors and their 

eigenvalues from a scatterplot of data after a linear transformation. Colored arrows show the 

“principal components” (rotated orientation axes) of the transformed data, which are the 

eigenvectors. The first principal component (blue arrow), is the largest eigenvector since in has 

the highest degree of variance associated with the data points projected onto it, and its variance 

magnitude gives us the eigenvalue of this eigenvector.  

 
Figure-2: Eigenvectors of a Covariance Matrix 
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PCA Application: Eigenfaces 

Now for another layer of abstraction – approaching this from a computer vision 

perspective. Assume the data sets we are taking in are 2D grayscale images of human faces, (a 

more complicated approach would be 3D colored images whose depths are the red, green, & blue 

pixel values). Imagine one image of a face (called an instance), whose grayscale pixel values 

ranging from 0-255. For face recognition, these images are represented as a matrix of their pixel 

values, and the matrix of a single instance would be transformed into one long vector of pixel 

values. Once each face in the data set has been vectorized, you can computer a mean of the 

vectors (or effectively the “average” face). If you subtract the mean face vector from each 

instance you, you end up with vector values which describe its variances from the mean face. 

You can then use Principal Component Analysis on these data sets (of face vector instances).  

This will produce a covariance matrix of the face images, having a set of eigenvectors 

which best describes the distribution of values (keeping only the highest eigenvalues) between 

data sets (IJRTE, 2009).  The eigenvectors for this application are called eigenfaces, which are 

the principal components projected onto the “face space” of all the images. Each eigenvector 

corresponds to one instance (or face image), where its largest eigenvalues best represent the 

variance of that face compared with respect to the mean. Visually these black and white 

eigenfaces would show a “ghostly face” for a unique individual, and the white represents where 

they vary most from the average face of the data set (IJARCET).  
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Conclusion 

The bottom-line impact of this thought experiment is to demonstrate how PCA is used to 

take a high-dimensional data set of correlated values and turn them into a covariance matrix of 

uncorrelated values which are the principal components whose distribution of values best 

represent its variance compared to others in that dataset. This approach is key to minimizing 

similarities between data sets (which are redundancies of a global pattern found), while 

maximizing the variance within data sets. As this presents a way to classify patterns and 

empathize discrepancies, PCA is uniquely powerful and fundamental when it comes to face 

recognition applications.   
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Reflective Memo 
 
From my perspective, I have always been so interested in the math that translates to object 

classification and face recognition in computer vision applications. While the math is still 

overwhelming for me to take in, as I learn more about it I get closer to recognizing how it 

translates to image classification. Hopefully someday I will able to implement my own math 

structures to perform PCA, and this is just the opportunity I needed to gain the knowledge for it. 

 

I think this is fundamental to machine learning applications as it teaches computer programs how 

to extract data patterns and empathize variations within the data. The applications are endless, 

and we have yet to really witness the depths of machine learning capabilities. Not only for 

computer engineering and computer science, but all fields of math, science, engineering will 

benefit from computer vision related technologies. 

 

I have learned more than I would have trying to learn about this any other way than writing a 

research paper and reading up on the core math involved. Hopefully I will be able to apply this in 

my senior design project and continue to specialize in this field. 
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