
Literature Review:

Smart Cat-Door System (SCDS)

(Via Convolutional Neural Networks)

Roderick L. Renwick
University of Michigan - Dearborn

April 2020

Abstraction
Cats are inherently territorial creatures and as such, it is unfair to expect these domesticated
animals to tolerate each other, especially when bringing a new cat into a household of
unsuspecting cats. This type of situation is likely to result in multiple forms of aggression
between cats as they fight for dominance and territory. Furthermore, this may lead to an
imperiled cat constantly laid victim to the stalking and pouncing of by a more dominant cat [3].

For an overwhelmed-homeowner, a dedicated safe room may prove to be the simple-solution
they need. However, the question arises: how do we mediate access to and from this room, for a
cat in distress? The answer proposed is a smart cat-door that uses computer vision to guarantee
a specified cat access through the door, while blocking any other cat or household pet out.

Thus, the purpose of this literature review is to identify any publications relevant to the use
of computer vision as the means to construct a smart cat-door which shall distinguish between
different instances (breeds) of a given class of animals (cats).

Introduction
While the field of computer vision is well documented and has been studied since the 1950s [1],
recent breakthroughs in deep learning via convolutional neural networks [2] have drastically
increased the potential for new and relevant computer vision applications in today’s world.
Through the usage of deep learning algorithms, convolutional neural networks (CNNs) can train
on large image-datasets to learn key features that describe an object or pattern. In turn, this
allows for a system to make predictions and classify objects in images with promisingly high
levels of accuracy [4].

Although image classification systems have been structured and deployed for many purposes,
the scope of this paper attempts to highlight specific research involving the recognition of cats as
an object-class, and the differentiation of different instances or breeds within the animal-class of
cats. This type of application is known as fine-grained object categorization [11]. Fine-grained
image classification attempts to home in on exceedingly subtle variances between instances
within a unique class [10].

The following segments provide a balance of basic insight into fine-grained image
classification [12] research-projects, as well as various methods that may be used to implement
the architecture required of a CNN which fits the smart cat-door system (SCDS).

2

Methodology
There are two levels of feature extractions that shall be implemented for this SCDS to make
inferences from: the first being a high-level feature extractor to recognize cat objects within an
image, and the second being a low-level feature extractor to distinguish between different cat
instances (i.e., breeds). Isolating these two extractors provides multiple approaches to
independent and distinct problems.

Fine-Grained Inferencing

Regarding the low-level feature extractor, we must look for an alternate approach as this task is
much more unique and specialized. The basic idea behind fine-grained image classification is to
distinguish between instances within a certain class, whose differences are subtle. This is the
concept that describes a capacity to discriminate between bird species, plant families, vehicle
models, and even animal breeds [7].

The most relevant studies into fine-grained object classification may be found from
references [10, 11, and 12]. As these studies suggest, an exceptionally large dataset is required
for fine-grained object classification. As such, this often makes transfer learning apropos for
establishing a base-model, since there are already many pre-trained models well established for
high-level image classification [10]. Fine-grained object categorization between breeds of cat
and dog classes is investigated thoroughly in reference [12]. The research study uses the Oxford-
IIIT-Pet data collection to gauge variance between breeds of different classifications and
discriminate between instances. Section 4.2 of this study is specifically geared towards breed
discrimination and found a performance accuracy of 63.48% for cats across 12 breeds.

Moving Forward
After considering the available publications relevant to a SCDS. It appears a multi-faceted
approach will be most useful in this endeavor. While fine-grained image classification systems
have been researched for the purpose of distinguishing breeds within an animal class, it remains
unclear how these architectures will perform in a real-world setting.

There is room for experimentation into building a system that will efficiently distinguish
between cat breeds in real-time via computer vision and constructing a smart cat-door prototype
that will act accordingly. The next step in this feasibility study involves a closer inspection of
CNN architectures.

3

Relevant Systems
The following chart below displays commercially available products that have any relationship
with a smart cat door product. These products all depend on some external signal, whether it be
RFID or ultrasonic communications, to function as intended. This means that the animals must
have an accessory on them, either in the form of a collar, or implanted in them with a microchip.

Commercially Available “Smart” Cat-Door System Products

Product Description Mechanisms Options Company Cost (USD)

P1 - Electronic
SmartDoor

[20]

SmartKey RFID collar
attachment to communicate
with door.

RFID Key
Fob

● Timer / Curfew
Constraints

PetSafe $100

P2 - Microchip
Cat Flap Connect

[21]

Unique RFID microchip
implant is remembered by
the door, and the internet
hub links to a phone
application for notifications.

RFID
Microchip
Implant; IoT
Notifications

● Timer / Curfew
Constraints

● Remote Locking
● Pet Specific

Control

Sure Petcare $243

P3 - Fully
Automatic Pet
Door

[22]

Ultrasonic collar attachment
to communicate with door.

Ultrasound
Key Fob

● Timer / Curfew
Constraints

High Tech
Pet Products

$400

● Note: While these products are labeled as “smart”, none of these use machine learning or computer vision solutions

Figure-1: Commercially Available SCDSs

Although there are zero products on the market that use machine learning to implement a
smart cat door, the next table illustrates two notable projects that have done so.

Standalone Smart Cat-Door System Projects via Machine Learning

Project Description Hardware Machine Learning Sponsor

P4 - AI-Powered Cat
Flap to Keep Out Dead
Prey

[23]

Using computer vision to identify a cat,
and whether it is carrying prey in its
mouth. If so, the cat door locks, stopping
dead prey from entering the house.

● Webcam
● Arduino
● Servo Motors

● Computer
Vision via
Convolutional
Neural Network

Ben
Hamm

P5 - Microsoft Facial
Recognition Cat Door

[24]

A motion sensor triggers a webcam to
capture a frame and run it through a Haar
cascade classifier to search for a cat. The
door then unlocks if a cat face is found.

● Webcam
● IR Sensor
● R-Pi 3
● Servo Motors

● Computer
Vision via Haar
Cascade
Classifiers

Microsoft

Figure-2: Standalone Projects SCDSs

4

Side by Side Review

The following table highlights the unique pros and cons of each product and project.

Compare & Contrast Key Features

Products Pros Cons

P1 ● Relatively cheap
○ Considered the standard smart cat

door / first to market

● Collar and battery dependent
● Will unlock when collar is within 2’ radius

○ If can is inside and near door, any
animal may enter from outside

P2 ● Control door lock settings for individual cats
○ Keep other cats indoors, while only

unlocking the door one-way for an
outside cat to walk inside

● Requires microchip implant in cat
● Can only remember up to 5 unique IDs
● Battery powered

P3 ● Automatically opens door
○ Good for smaller animals that

cannot push through the door

● Expensive
● Requires cat collar

P4 ● Prevents dead prey from entering home ● No mechanism for keeping other animals out
○ Door stays unlocked unless it sees

cat with dead prey

P5 ● Fast algorithm ● Requires clear face-shot of cat for detection
● No instance classification of individual cats

Figure-3: Comparison Table for SCDSs

After reviewing these key features, there is clearly room for more innovation in the area
of smart cat doors. The most apparent problem for the commercial products is the need to have
an external signal communicate with the door to signify whether a cat is nearby or not. Computer
vision can provide a solution to this, as a system may be trained to recognize a cat using only a
camera. However, the two computer vision projects mentioned above (P4, &P5), are very limited
in scope and are not fitting for the purposes of a SCDS. They do not distinguish between
different instances of cats, nor were they created for the purpose of a traditional cat door.

This helps narrow down the scope and unique functionality for a new SCDS project. The
next section details the requirements for this new computer vision-based system.

5

Requirements

Functional

The functional requirements of this project are laid out in the following table.

Unsolved Problems

System shall be able to:
1. Detect whether a cat is present in each image (SW - model 1)
2. Identify a unique cat from a segmentation image (SW - model 2)
3. Grant access according to model predictions (HW - structure)

System shall not depend on:
4. External signal identifiers (i.e., microchip implants)
5. Animal accessories (i.e., collars)
6. Batteries

System shall not be constrained by:
7. The number of unique cats it may recognize
8. The need for a clear image of the cat’s face
9. High implementation costs

Figure-4: My SCDS Requirements

6

With the proposed requirements stated above (figure-4), we cannot include the new
SCDS project in the comparison table shown below in figure-5.

Compare & Contrast Key Features

Products Pros Cons

P1 ● Relatively cheap ● Collar and battery dependent
● Will unlock when collar is within 2’ radius

P2 ● Control lock settings for individual cats ● Requires microchip implant in cat
● Can only remember up to 5 unique IDs
● Battery powered

P3 ● Automatically opens door ● Expensive
● Requires cat collar

P4 ● Prevents dead prey from entering home ● No mechanism for keeping other animals out

P5 ● Fast algorithm ● Requires clear face-shot of cat for detection
● No instance classification for individual cats

My
SCDS

● Cat detect and identify individual cats
● Stores recent snapshots when granting access
● Does not require microchip or collar

● Does not do night vision

Figure-5: Comparison Table for SCDSs (including my SCDS)

Non-Functional

For the programming aspect of this project, Python will be used as it is easiest for
integration of various modules and is well documented. The computer vision modules will
primarily use TensorFlow as the backend and Keras as the front end for any machine learning
applications. As for the hardware, a Nvidia Jetson-Nano GPU will be used, with an attached
camera. Google Colaboratory will be the programming environment used before implementing
the design onto the physical Jetson-Nano hardware.

7

Design

Broad Overview
The following figure illustrates the system functionality from the highest abstraction. This
system is broken up into two sub-modules, meeting requirements 1 and 2 respectively.

Figure-6.A: High-Level Design Overview for Module 1

Figure-6.B: High-Level Design Overview for Module 2

8

Module 1 - Cat Detector
The following figure (figure-7) illustrates the inputs and outputs of the first CNN,

module-1, from the highest level of abstraction. This module shall be responsible for taking an
input image frame (from a live-camera feed) and determining whether this image frame contains
a cat within it. If it is determined that there is a cat in the frame, this frame then gets flagged
“positive”, and gets passed onto the next module (module 2).

Figure-7: Model-1 High-Level Design (Cat Detector)

Below is a conceptual illustration of the CNN architecture (figure 9) used for this
module. As shown, an input tensor is provided as an input, having a width and height of 224
pixels (likely after having been resized and/or reshaped) and a depth of 3 (representing the 3
color-channels, RGB). There are 32 convolution filters (each a collection of 3 channels or
“kernels”) applied to the input image, followed by a max-pooling operation that down samples
the image to a width and height of 112 pixels and a depth of 64 layers (or “filters” which would
give us 192 feature-maps or “kernels”).

Figure-9: Model-1 CNN Architecture (Cat Detector)

9

The following flowchart illustrates the structuring of the convolutional neural network.

Figure-8: Model-1 Low-Level Design (Cat Detector)

For the first model, a rather extensive dataset is required to thoroughly train the network
on background images, as well as the cats so that it does not miss-identify. Both the Oxford-IIIT
and 2012 Visual Object Classes (VOC) Datasets are excellent and will be used here [15]. One of
the biggest challenges will be correcting the bias of the weights while training from this dataset.
Given that there are 20 classes, and we only care about distinguishing between cat and non-cat
images, this means that the ratio of training images will be about 1:19. Depending on the exact
total of images for the positive and negative image classifications, weight adjustments may be set
in an attempt to balance the network for more stable training.

10

Module 2 - Cat Identifier
This last module is responsible for the identification of individual cats. Figure-10 below,

illustrates the inputs and outputs of module-2, which distinguishes which cat the image likely
belong to.

Figure-10: Model-2 High-Level Design (Cat Identifier)

Since this module uses a traditional CNN style architecture, the figure below (figure-11)
is another illustration of the CNN, like that of figure-9. Here the input image has a height of 128
x 128, with a depth of 3.

Figure-11: Model-2 CNN Architecture (Cat Identifier)

The development for Model 2 will follow the same structure as laid out in figure-10, except
reduced in complexity as it will have much less layers since it will be a similar task.

11

Implementation

Module 1 - Cat Detector
The figure below shows the input layer for the sequential mode. Note that the input tensor shape
must be the consistant size of the original image. In this case, the input tensor is 256, by 256, by
3 (height, width, and color channels respectivley).

INPUT_LAYER :
Start w/ kernel size of 7 for lrg feature detection, stride of 2 to reduce output volume
NOTE: MaxPool(ReLU(Conv(M))) == ReLU(MaxPool(Conv(M)))
Order does not matter since it will yield same result
#--

def add_input_layer(model, shape = INPUT_SHAPE, filters = FILTER_COUNT):

 model.add(Conv2D(filters = filters, kernel_size = 3, padding = 'same', input_shape = shape))

 model.add(MaxPooling2D(pool_size = 2))
 model.add(LeakyReLU(alpha = 0.1))
 model.add(Dropout(DROPOUT))

 Figure-12: Input Layer for Model-1

The next figure shows the convolution blocks of the CNN model. Each convolution block
has two layers, where each layer goes through a 2D convolution filter, batch normalization, and a
relu activation filter. In between sets of convolution blocks, max pooling is applied to down
sample the image while retaining needed information for classification.

CONVOLUTION_BLOCKS : Layers of convolution, activation, batch normalization, dropout
#--
def add_convolution_block(model, filters = FILTER_COUNT, kernel_size = 3):

 model.add(Conv2D(filters = filters, kernel_size = kernel_size, padding = 'same'))
 model.add(LeakyReLU(alpha = 0.1))

 model.add(Conv2D(filters = filters, kernel_size = kernel_size, padding = 'same'))
 model.add(LeakyReLU(alpha = 0.1))

 model.add(BatchNormalization())
 model.add(MaxPooling2D(pool_size = 2))
 model.add(Dropout(DROPOUT))

 Figure-13: Layers of a Convolution Block for Model-1

12

The next figure shows the fully connected layer. After the last pooling operation is
applied, the tensor is then flattened into a vector. Every element within this vector is connected
to the following fully connected vectors until reaching a two-unit vector whose elements
represent different classification categories. Thus, these fully connected layers are also known as
densely connected layers.

FULLY_CONNECTED_LAYER (FCL) : Takes in all neurons or nodes for the layer (aka dense layer)
Input Layer : Expects arrays of shape: (*, k), where k is number of input features
Hidden Layers : Num of nodes in HL = output dim of dense layer, relu activation
Output layer : 1 node, softmax activation fn
#--

def add_fully_connected_layer(model):

 model.add(Flatten())

def add_dense_block(model, units):

 model.add(Dense(units = units))
 model.add(LeakyReLU(alpha = 0.1))

 model.add(Dense(units = units))
 model.add(LeakyReLU(alpha = 0.1))

 model.add(BatchNormalization())
 model.add(Dropout(DROPOUT * 2))

 Figure-14: Fully Connected Layer for Model-1

The last figure below shows a simple function to build the model structure using the encoder and
fully connected layer sections implemented above.

def build_model(shape = INPUT_SHAPE, filters = FILTER_COUNT):

 classifier = Sequential()

 add_input_layer(model = classifier, shape = shape, filters = filters) # Input layer

 # Convolution Blocks
 add_convolution_block(model = classifier, filters = (filters * 2), kernel_size = 3)
 add_convolution_block(model = classifier, filters = (filters * 4), kernel_size = 3)
 add_convolution_block(model = classifier, filters = (filters * 8), kernel_size = 3)
 add_convolution_block(model = classifier, filters = (filters * 16), kernel_size = 3)
 add_convolution_block(model = classifier, filters = (filters * 32), kernel_size = 3)

 add_fully_connected_layer(classifier) # FCL
 add_dense_block(model = classifier, units = 128) # Dense Blocks
 classifier.add(Dense(units = CLASSES_COUNT, activation = 'softmax')) # Softmax Activation
 compile_model(model = classifier) # Optimizer

 return(classifier)

 Figure-15: CNN Model Build for Model-1

13

The last figure shows the resulting summary of the model after it has been constructed.

Figure-16: Architecture Summary for Model-1

14

Module 2 - Cat Identifier
The last network is a very simple CNN model which will only take in input pixels

relating to a given cat. Since the number of pixels is minimized, and the variance between cats
needed to be identified is relatively large, this network only requires a couple simple layers to
effectively and efficiently distinguish between the different cat classes. The following figure
below provides the implementation for building the model. Three convolution blocks are
followed by a flattening layer, and then two dense layers to arrive at the final classification
categorization. This completes the main bulk of the software implementation for this SCDS.

def build_model(input_shape = INPUT_SHAPE, filters = FILTER_COUNT):

 classifier = Sequential()
 classifier.add(Conv2D(filters = filters * 1, kernel_size = 3,
 strides = 2, padding = 'same', input_shape = input_shape))

 classifier.add(Dropout(DROPOUT))

 classifier.add(Conv2D(filters = filters * 2, kernel_size = 3, padding = 'same'))
 classifier.add(LeakyReLU(alpha = 0.1))

 classifier.add(Conv2D(filters = filters * 2, kernel_size = 3, padding = 'same'))
 classifier.add(LeakyReLU(alpha = 0.1))

 classifier.add(BatchNormalization())
 classifier.add(MaxPooling2D(pool_size = 2))
 classifier.add(Dropout(DROPOUT))

 classifier.add(Conv2D(filters = filters * 4, kernel_size = 3, padding = 'same'))
 classifier.add(LeakyReLU(alpha = 0.1))

 classifier.add(Conv2D(filters = filters * 4, kernel_size = 3, padding = 'same'))
 classifier.add(LeakyReLU(alpha = 0.1))

 classifier.add(BatchNormalization())
 classifier.add(MaxPooling2D(pool_size = 2))
 classifier.add(Dropout(DROPOUT))

 # FCL
 classifier.add(Flatten())

 classifier.add(Dense(units = 64))
 classifier.add(LeakyReLU(alpha = 0.1))

 classifier.add(Dense(units = 64))
 classifier.add(LeakyReLU(alpha = 0.1))

 classifier.add(BatchNormalization())
 classifier.add(Dropout(DROPOUT * 2))

 # Softmax Classifier
 classifier.add(Dense(units = 2)) # Number of classes = 2
 classifier.add(Activation('softmax'))

 # Optimizer
 classifier.compile(optimizer = OPTIMIZER, loss = LOSSES, metrics = METRICS, run_eagerly = False)

 return(classifier)

 Figure-17: CNN Model Build for Model-2

15

Physical Structue
Here is an image of the working enviornment, where the rug is the region of interest for the

camera. This is the cat door which the test subjects will be attempting to pass through. Notice the Jetson
Nano is stationed at the bottom left corner near the door.

Figure-18: Working Prototype Enviornment

The next peripheral to setup was a pwm driver to control the servo latch and the blinking LEDs.
The first figure below on the rigth ([13]) is the adafruit pwm driver that we used to power the servo motor
and the LEDs. The figure to the right of that is the Jetson Nano pinout table that we used to find the I2C
bus pins (power, ground, data, and clock) [14, 15, and 16]. After the pwm driver was connected to the
Jetson Nano.

Figure-19: PWD Driver & Jetson Nano Pinouts

16

The following figures below show the physical implementation of the pwm driver.

Figure-20: PWM Driver Impmentation

The next peripheral to setup was the servo latch and the blinking LEDs, operated by the PWM
driver. The implmentations are dislayed below, where the left image shows the front of the cat door, and
the status-LEDs, and the right side shows the servo latch visable before mounting the cat door.

For the LEDs, the blue left-most light indicates that the system is on, and running. The yellow
LED turns on if the system has found a cat within the field of view, and then the red LED will turn on if
that cat is determined to be a cat not allowed through, or else the red LED will turn on to indicated that
the cat is allowed through. If the cat is allowed through, the servo latch will rotate clockwise, where the
arm is in a horizontal position, allowing for the cat door to swing open. Otherwise, the servo latch will
rotate counter-clockwise, aligning the arm vertically as to block the cat door from swinging open.

Figure-21: LED Implmentation (RHS) & Servo Latch Impmentation (RHS)

17

Test Subjects
Here are the two cats in question for this project. The cat on the left is named Remi (Cat A), and

the cat on the right is named Lightning (Cat B). Remi is the cat to be prevented from going through this
cat door, while Lightning is the cat to be accepted.

Figure-22: Test Subjects (Cats A & B)

18

Testing

Module 1 - Cat Detector
The following figures show the model accuracy and cross-entropy loss during training for
model-1 on both the validation and training datasets.

 Figure-23 Training Accuracy and Cross Entropy for Model-1

Image classification results are provided below in from both the testing data.

Figure-24: Test Case Image

19

Module 2 - Cat Identifier
The following figures show the model accuracy and cross-entropy loss during training for

model-2 on both the validation and training datasets.

Figure-25: Training Accuracy and Cross Entropy for Model-2

Again, image classification results are provided below in from both the testing data.

Figure-26: Cat Identifier Test Case

20

Video 1 Pipeline
The first test video for the pipeline test is of Rem (Cat A) running through the field of

view. As illustrated in the image below, the resulting frame classifications from model 1 are very
percise. Above each frame is it’s classification from model 1 (cat or no cat), follwed by the
frame index, and then the prediction confidence level.

Figure-27: Video 1 Test Case for Model 1 (Cat Detector)

The next image illustrates the predictions made from model 2, after the frames which
have been determined as cat images have been passed down the pipeline from model 1. This
time the frame classification is either ‘Remi’ or ‘Lightning’. The cat is correctly identified in each
frame.

Figure-28: Video 1 Test Case for Model 2 (Cat Identifier)

21

Video 2 Pipeline
The second test video for the pipeline test is of Lightning (Cat B) running through the

field of view. The image below illustrates the resulting frame classifications from model 1 are
again very percise, correctly identifying almost all frames where Lightning enters the view. Once
the whole body of the cat is in the image, the predictions are 100% accurate.

Figure-29: Video 2 Test Case for Model 1 (Cat Detector)

22

The next image illustrates the predictions made from model 2 for the second video,
again with 100% accuracey.

Figure-30: Video 2 Test Case for Model 2 (Cat Identifier)

23

Final Full System
After assembling the peripheral devices, training the models, and developing the camera

pipeline, the final test is that of the full system from start to finish. Note that these test result
images were taken from a camera other than the one used by the system, so that the images
could display the cat as well as the status LEDs on the cat door in order to best represent the
Smart Cat-Door System system. The first image shows the result of the default state, where the
system is running (indicated by the blue LED being on) and there is no cat detected (indicated
by the yellow LED being off). Although not visible, the latch is in the closed state, followed down
being the door, leaving the cat door unlocked and able to swing open.

Figure-31: Full System Test Case for No Cat

The next set of images are the testing results for Remi (Cat-A). Here you can see that both a cat
has been detected (indicated by the yellow LED being on), and that it has been correctly
identified as Remi (indicated by the red LED being on). At the point, the latch is in an upward
position to lock the cat door and not allow Remi through.

Figure-32: Full System Test Case for Remi (Cat A)

The last set of images are the testing results for Lightning. Again, the system has indicated that
a cat has been detected (yellow LED is on), and now it has correctly identified the cat as
Lightning (indicated by the green LED being on).

Figure-33: Full System Test Case for Lightning (Cat B)

24

References
Background Research, CNN Implmentations

1. Mihajlovic, Ilija. “Everything You Ever Wanted to Know About Computer Vision. Here's A Look Why It's So
Awesome.” Medium, Towards Data Science, 28 Nov. 2019, towardsdatascience.com/everything-you-ever-
wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e.

2. Demush, Rostyslav. “A Brief History of Computer Vision (and Convolutional Neural Networks).” By Rostyslav
Demush, A Brief History of Computer Vision (and Convolutional Neural Networks), 26 Feb. 2019,
hackernoon.com/a-brief-history-of-computer-vision-and-convolutional-neural-networks-8fe8aacc79f3.

3. “Aggression between Cats.” The Humane Society of the United States,
www.humanesociety.org/resources/aggression-between-cats.

4. Le, James. “How to Do Semantic Segmentation Using Deep Learning.” AI & Machine Learning Blog, AI &
Machine Learning Blog, 23 Oct. 2019, nanonets.com/blog/how-to-do-semantic-segmentation-using-deep-
learning/.

5. Gupta, Divam. "A Beginner's Guide to Deep Learning Based Semantic Segmentation Using Keras." Divam
Gupta, 6 June 2019, divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-
keras.html.

6. "CS231n Convolutional Neural Networks for Visual Recognition." CS231n Convolutional Neural Networks for
Visual Recognition, cs231n.github.io/transfer-learning/.

7. Zheng, Heliang; Fu, Jianlong; Zha, Zheng-Jun; Luo, Jiebo. “Looking for the Devil in the Details: Learning
Trilinear Attention SamplingNetwork for Fine-grained Image Recognition.” ArXiv.org E-Print Archive, 11 June
2019, arxiv.org/pdf/1903.06150v2.pdf.

8. "Distinguishing Classification Tasks with Convolutional Neural Networks." Dummies, 16 July 2019,
www.dummies.com/programming/big-data/data-science/distinguishing-classification-tasks-with-convolutional-
neural-networks/.

9. Boyer, Marnie. "Dog Breed Classification Using a Pre-trained CNN Model." Medium, 20 Mar. 2019,
medium.com/@marnieboyer/dog-breed-classification-using-a-pre-trained-cnn-model-84d0af72b4fc.

10. Xiao, Tianjun; Xu, Yichong; Yang, Kuiyuan; Zhang, Jiaxing; Peng, Yuxin; Zhang, Zheng. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015"CVPR 2015 Open Access
Repository." Http://openaccess.thecvf.com/,
openaccess.thecvf.com/content_cvpr_2015/html/Xiao_The_Application_of_2015_CVPR_paper.html.

11. Parkhi, Omkar; Vedaldi, Andrea; Zisserman, Andrew; Jawahar, C.V. “Cats and Dogs.” Information
Engineering Main/Home Page, www.robots.ox.ac.uk/~vgg/publications/2012/parkhi12a/parkhi12a.pdf.

25

http://www.humanesociety.org/resources/aggression-between-cats

26

PWM & I2C Setup:

13. Earl, B. (n.d.). Adafruit PCA9685 16-Channel Servo Driver. Retrieved from https://learn.adafruit.com/16-
channel-pwm-servo-driver/hooking-it-up.

14. Warren, S., & Tan, A. (2019, October 30). NVIDIA/jetson-gpio. Retrieved from
https://github.com/NVIDIA/jetson-gpio.

15. Jetson Nano - Using I2C. (2019, September 29). Retrieved from
https://www.jetsonhacks.com/2019/07/22/jetson-nano-using-i2c/.

16. Element14: NVIDIA Jetson Nano Developer Kit Pinout and Diagrams. (2019, May 21). Retrieved from https://
www.element14.com/community/community/designcenter/single-board-computers/blog/2019/05/21/nvidia-
jetson-nano-developer-kit-pinout-and-diagrams.

Visual Object Classes (VOC) Dataset:

17. http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Oxford-IIIT Per Dataset:

18. https://www.robots.ox.ac.uk/~vgg/data/pets/

CNN Visualization Tool:

19. http://alexlenail.me/NN-SVG/AlexNet.html

Commercial Products

20. "Electronic SmartDoor™." PetSafe, store.petsafe.net/electronic-smartdoor.

21. "Microchip Cat Flap Connect." SureFlap | Award Winning Microchip Cat Doors & Feeders,
www.surepetcare.com/en-us/pet-doors/microchip-cat-flap-connect.

22. "Electric Pet Door Keeps Out Raccoons & Stray Animals." Electronic Pet Doors, Dog Fences, Bark &
Training Collars, www.hitecpet.com/autpetdoorfo1.html.

Public Projects

23. Vincent, James. "An Amazon Employee Made an AI-powered Cat Flap to Stop His Cat from Bringing Home
Dead Animals." The Verge, 30 June 2019, www.theverge.com/tldr/2019/6/30/19102430/amazon-engineer-ai-
powered-catflap-prey-ben-hamm.

24. "Cat Door with Pet Recognition." Hackster.io, Microsoft, 8 June 2017, www.hackster.io/windowsiot/cat-door-
with-pet-recognition-514dac.

27

	Abstraction
	Introduction
	Methodology
	Fine-Grained Inferencing

	Moving Forward
	Relevant Systems
	Side by Side Review

	Requirements
	Functional
	Non-Functional

	Design
	Broad Overview
	Module 1 - Cat Detector
	Module 2 - Cat Identifier

	Implementation
	Module 1 - Cat Detector
	Module 2 - Cat Identifier
	Physical Structue
	Test Subjects
	Module 1 - Cat Detector
	Module 2 - Cat Identifier
	Video 1 Pipeline
	Video 2 Pipeline
	Final Full System

	References

