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Abstraction
Cats are inherently territorial creatures and as such, it is unfair to expect these domesticated 
animals to tolerate each other, especially when bringing a new cat into a household of 
unsuspecting cats. This type of situation is likely to result in multiple forms of aggression 
between cats as they fight for dominance and territory. Furthermore, this may lead to an 
imperiled cat constantly laid victim to the stalking and pouncing of by a more dominant cat [3]. 

For an overwhelmed-homeowner, a dedicated safe room may prove to be the simple-solution
they need. However, the question arises: how do we mediate access to and from this room, for a 
cat in distress? The answer proposed is a smart cat-door that uses computer vision to guarantee 
a specified cat access through the door, while blocking any other cat or household pet out.  

Thus, the purpose of this literature review is to identify any publications relevant to the use 
of computer vision as the means to construct a smart cat-door which shall distinguish between 
different instances (breeds) of a given class of animals (cats).

Introduction
While the field of computer vision is well documented and has been studied since the 1950s [1], 
recent breakthroughs in deep learning via convolutional neural networks [2] have drastically 
increased the potential for new and relevant computer vision applications in today’s world. 
Through the usage of deep learning algorithms, convolutional neural networks (CNNs) can train 
on large image-datasets to learn key features that describe an object or pattern. In turn, this 
allows for a system to make predictions and classify objects in images with promisingly high 
levels of accuracy [4]. 

Although image classification systems have been structured and deployed for many purposes,
the scope of this paper attempts to highlight specific research involving the recognition of cats as
an object-class, and the differentiation of different instances or breeds within the animal-class of 
cats. This type of application is known as fine-grained object categorization [11]. Fine-grained 
image classification attempts to home in on exceedingly subtle variances between instances 
within a unique class [10]. 

The following segments provide a balance of basic insight into fine-grained image 
classification [12] research-projects, as well as various methods that may be used to implement 
the architecture required of a CNN which fits the smart cat-door system (SCDS). 
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Methodology
There are two levels of feature extractions that shall be implemented for this SCDS to make 
inferences from: the first being a high-level feature extractor to recognize cat objects within an 
image, and the second being a low-level feature extractor to distinguish between different cat 
instances (i.e., breeds). Isolating these two extractors provides multiple approaches to 
independent and distinct problems. 

Fine-Grained Inferencing 

Regarding the low-level feature extractor, we must look for an alternate approach as this task is 
much more unique and specialized. The basic idea behind fine-grained image classification is to 
distinguish between instances within a certain class, whose differences are subtle. This is the 
concept that describes a capacity to discriminate between bird species, plant families, vehicle 
models, and even animal breeds [7]. 

The most relevant studies into fine-grained object classification may be found from 
references [10, 11, and 12]. As these studies suggest, an exceptionally large dataset is required 
for fine-grained object classification. As such, this often makes transfer learning apropos for 
establishing a base-model, since there are already many pre-trained models well established for 
high-level image classification [10]. Fine-grained object categorization between breeds of cat 
and dog classes is investigated thoroughly in reference [12]. The research study uses the Oxford-
IIIT-Pet data collection to gauge variance between breeds of different classifications and 
discriminate between instances. Section 4.2 of this study is specifically geared towards breed 
discrimination and found a performance accuracy of 63.48% for cats across 12 breeds.

Moving Forward
After considering the available publications relevant to a SCDS. It appears a multi-faceted 
approach will be most useful in this endeavor. While fine-grained image classification systems 
have been researched for the purpose of distinguishing breeds within an animal class, it remains 
unclear how these architectures will perform in a real-world setting.  

There is room for experimentation into building a system that will efficiently distinguish 
between cat breeds in real-time via computer vision and constructing a smart cat-door prototype 
that will act accordingly. The next step in this feasibility study involves a closer inspection of 
CNN architectures. 
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Relevant Systems
The following chart below displays commercially available products that have any relationship 
with a smart cat door product. These products all depend on some external signal, whether it be 
RFID or ultrasonic communications, to function as intended. This means that the animals must 
have an accessory on them, either in the form of a collar, or implanted in them with a microchip.

Commercially Available “Smart” Cat-Door System Products

Product Description Mechanisms Options Company Cost (USD)

P1 - Electronic 
SmartDoor

[20]

SmartKey RFID collar 
attachment to communicate 
with door.

RFID Key 
Fob 

● Timer / Curfew 
Constraints

PetSafe $100

P2 - Microchip 
Cat Flap Connect

[21]

Unique RFID microchip 
implant is remembered by 
the door, and the internet 
hub links to a phone 
application for notifications.

RFID 
Microchip 
Implant; IoT 
Notifications

● Timer / Curfew 
Constraints

● Remote Locking
● Pet Specific 

Control

Sure Petcare $243

P3 - Fully 
Automatic Pet 
Door

[22]

Ultrasonic collar attachment 
to communicate with door. 

Ultrasound 
Key Fob

● Timer / Curfew 
Constraints

High Tech
Pet Products

$400

● Note: While these products are labeled as “smart”, none of these use machine learning or computer vision solutions 

Figure-1: Commercially Available SCDSs

Although there are zero products on the market that use machine learning to implement a 
smart cat door, the next table illustrates two notable projects that have done so.   

Standalone Smart Cat-Door System Projects via Machine Learning

Project Description Hardware Machine Learning Sponsor

P4 - AI-Powered Cat 
Flap to Keep Out Dead
Prey

[23]

Using computer vision to identify a cat, 
and whether it is carrying prey in its 
mouth. If so, the cat door locks, stopping 
dead prey from entering the house. 

● Webcam
● Arduino 
● Servo Motors

● Computer 
Vision via 
Convolutional 
Neural Network

Ben
Hamm

P5 - Microsoft Facial 
Recognition Cat Door

[24]

A motion sensor triggers a webcam to 
capture a frame and run it through a Haar 
cascade classifier to search for a cat. The 
door then unlocks if a cat face is found.

● Webcam
● IR Sensor
● R-Pi 3
● Servo Motors

● Computer 
Vision via Haar 
Cascade 
Classifiers 

Microsoft

Figure-2: Standalone Projects SCDSs
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Side by Side Review

The following table highlights the unique pros and cons of each product and project.

Compare & Contrast Key Features

Products Pros Cons

P1 ● Relatively cheap 
○ Considered the standard smart cat 

door / first to market

● Collar and battery dependent 
● Will unlock when collar is within 2’ radius

○ If can is inside and near door, any 
animal may enter from outside

P2 ● Control door lock settings for individual cats
○ Keep other cats indoors, while only 

unlocking the door one-way for an 
outside cat to walk inside

● Requires microchip implant in cat
● Can only remember up to 5 unique IDs
● Battery powered

P3 ● Automatically opens door
○ Good for smaller animals that 

cannot push through the door

● Expensive
● Requires cat collar 

P4 ● Prevents dead prey from entering home ● No mechanism for keeping other animals out
○ Door stays unlocked unless it sees 

cat with dead prey 

P5 ● Fast algorithm ● Requires clear face-shot of cat for detection
● No instance classification of individual cats 

Figure-3: Comparison Table for SCDSs

After reviewing these key features, there is clearly room for more innovation in the area 
of smart cat doors. The most apparent problem for the commercial products is the need to have 
an external signal communicate with the door to signify whether a cat is nearby or not. Computer
vision can provide a solution to this, as a system may be trained to recognize a cat using only a 
camera. However, the two computer vision projects mentioned above (P4, &P5), are very limited
in scope and are not fitting for the purposes of a SCDS. They do not distinguish between 
different instances of cats, nor were they created for the purpose of a traditional cat door. 

This helps narrow down the scope and unique functionality for a new SCDS project. The 
next section details the requirements for this new computer vision-based system.
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Requirements

Functional 

The functional requirements of this project are laid out in the following table. 

Unsolved Problems

System shall be able to:
1. Detect whether a cat is present in each image (SW - model 1)
2. Identify a unique cat from a segmentation image (SW - model 2)
3. Grant access according to model predictions (HW - structure) 

System shall not depend on:
4. External signal identifiers (i.e., microchip implants)
5. Animal accessories (i.e., collars)
6. Batteries 

System shall not be constrained by:
7. The number of unique cats it may recognize
8. The need for a clear image of the cat’s face 
9. High implementation costs 

Figure-4: My SCDS Requirements
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With the proposed requirements stated above (figure-4), we cannot include the new 
SCDS project in the comparison table shown below in figure-5.
 

Compare & Contrast Key Features

Products Pros Cons

P1 ● Relatively cheap ● Collar and battery dependent 
● Will unlock when collar is within 2’ radius

P2 ● Control lock settings for individual cats ● Requires microchip implant in cat
● Can only remember up to 5 unique IDs
● Battery powered

P3 ● Automatically opens door ● Expensive
● Requires cat collar 

P4 ● Prevents dead prey from entering home ● No mechanism for keeping other animals out

P5 ● Fast algorithm ● Requires clear face-shot of cat for detection
● No instance classification for individual cats

My
SCDS

● Cat detect and identify individual cats
● Stores recent snapshots when granting access
● Does not require microchip or collar 

● Does not do night vision 

Figure-5: Comparison Table for SCDSs (including my SCDS)

Non-Functional 

For the programming aspect of this project, Python will be used as it is easiest for 
integration of various modules and is well documented. The computer vision modules will 
primarily use TensorFlow as the backend and Keras as the front end for any machine learning 
applications. As for the hardware, a Nvidia Jetson-Nano GPU will be used, with an attached 
camera. Google Colaboratory will be the programming environment used before implementing 
the design onto the physical Jetson-Nano hardware.  
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Design

Broad Overview
The following figure illustrates the system functionality from the highest abstraction. This 
system is broken up into two sub-modules, meeting requirements 1 and 2 respectively.

Figure-6.A: High-Level Design Overview for Module 1

Figure-6.B: High-Level Design  Overview for Module 2
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Module 1 - Cat Detector 
The following figure (figure-7) illustrates the inputs and outputs of the first CNN, 

module-1, from the highest level of abstraction. This module shall be responsible for taking an 
input image frame (from a live-camera feed) and determining whether this image frame contains 
a cat within it. If it is determined that there is a cat in the frame, this frame then gets flagged 
“positive”, and gets passed onto the next module (module 2).

 

Figure-7: Model-1 High-Level Design (Cat Detector)

Below is a conceptual illustration of the CNN architecture (figure 9) used for this 
module. As shown, an input tensor is provided as an input, having a width and height of 224 
pixels (likely after having been resized and/or reshaped) and a depth of 3 (representing the 3 
color-channels, RGB). There are 32 convolution filters (each a collection of 3 channels or 
“kernels”) applied to the input image, followed by a max-pooling operation that down samples 
the image to a width and height of 112 pixels and a depth of 64 layers (or “filters” which would 
give us 192 feature-maps or “kernels”).

Figure-9: Model-1 CNN Architecture (Cat Detector)
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The following flowchart illustrates the structuring of the convolutional neural network.

Figure-8: Model-1 Low-Level Design (Cat Detector)

For the first model, a rather extensive dataset is required to thoroughly train the network 
on background images, as well as the cats so that it does not miss-identify. Both the Oxford-IIIT 
and 2012 Visual Object Classes (VOC) Datasets are excellent and will be used here [15]. One of 
the biggest challenges will be correcting the bias of the weights while training from this dataset. 
Given that there are 20 classes, and we only care about distinguishing between cat and non-cat 
images, this means that the ratio of training images will be about 1:19. Depending on the exact 
total of images for the positive and negative image classifications, weight adjustments may be set
in an attempt to balance the network for more stable training.
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Module 2 - Cat Identifier
This last module is responsible for the identification of individual cats. Figure-10 below, 

illustrates the inputs and outputs of module-2, which distinguishes which cat the image likely 
belong to. 

Figure-10: Model-2 High-Level Design (Cat Identifier)

Since this module uses a traditional CNN style architecture, the figure below (figure-11) 
is another illustration of the CNN, like that of figure-9. Here the input image has a height of 128 
x 128, with a depth of 3. 

Figure-11: Model-2 CNN Architecture (Cat Identifier)

The development for Model 2 will follow the same structure as laid out in figure-10, except 
reduced in complexity as it will have much less layers since it will be a similar task. 
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Implementation 

Module 1 - Cat Detector 
The figure below shows the input layer for the sequential mode. Note that the input tensor shape 
must be the consistant size of the original image. In this case, the input tensor is 256, by 256, by 
3 (height, width, and color channels respectivley). 

# INPUT_LAYER :
# Start w/ kernel size of 7 for lrg feature detection, stride of 2 to reduce output volume
# NOTE: MaxPool( ReLU( Conv( M ) ) ) == ReLU( MaxPool( Conv( M ) ) )
# Order does not matter since it will yield same result
#------------------------------------------------------------------------------------------------------

def add_input_layer( model, shape = INPUT_SHAPE, filters = FILTER_COUNT ):

    model.add( Conv2D( filters = filters, kernel_size = 3, padding = 'same', input_shape = shape ) )

    model.add( MaxPooling2D( pool_size = 2 ) )
    model.add( LeakyReLU( alpha = 0.1 ) )
    model.add( Dropout( DROPOUT ) )

 Figure-12: Input Layer for Model-1

The next figure shows the convolution blocks of the CNN model. Each convolution block
has two layers, where each layer goes through a 2D convolution filter, batch normalization, and a
relu activation filter. In between sets of convolution blocks, max pooling is applied to down 
sample the image while retaining needed information for classification. 

# CONVOLUTION_BLOCKS : Layers of convolution, activation, batch normalization, dropout 
#------------------------------------------------------------------------------------------------------
def add_convolution_block( model, filters = FILTER_COUNT, kernel_size = 3 ):

    model.add( Conv2D( filters = filters, kernel_size = kernel_size, padding = 'same' ) )
    model.add( LeakyReLU( alpha = 0.1 ) )

    model.add( Conv2D( filters = filters, kernel_size = kernel_size, padding = 'same' ) )
    model.add( LeakyReLU( alpha = 0.1 ) )

    model.add( BatchNormalization() )
    model.add( MaxPooling2D( pool_size = 2 ) )
    model.add( Dropout( DROPOUT ) )

 Figure-13: Layers of a Convolution Block for Model-1
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The next figure shows the fully connected layer. After the last pooling operation is 
applied, the tensor is then flattened into a vector. Every element within this vector is connected 
to the following fully connected vectors until reaching a two-unit vector whose elements 
represent different classification categories. Thus, these fully connected layers are also known as 
densely connected layers.  

# FULLY_CONNECTED_LAYER ( FCL ) : Takes in all neurons or nodes for the layer (aka dense layer )
# Input Layer   : Expects arrays of shape: (*, k ), where k is number of input features 
# Hidden Layers : Num of nodes in HL = output dim of dense layer, relu activation
# Output layer  : 1 node, softmax activation fn
#------------------------------------------------------------------------------------------------------

def add_fully_connected_layer( model ):

    model.add( Flatten() )

def add_dense_block( model, units ):

    model.add( Dense( units = units ) )
    model.add( LeakyReLU( alpha = 0.1 ) )

    model.add( Dense( units = units ) )
    model.add( LeakyReLU( alpha = 0.1 ) )

    model.add( BatchNormalization() )
    model.add( Dropout( DROPOUT * 2 ) )

 Figure-14: Fully Connected Layer for Model-1

The last figure below shows a simple function to build the model structure using the encoder and 
fully connected layer sections implemented above. 

def build_model( shape = INPUT_SHAPE, filters = FILTER_COUNT ):

    classifier = Sequential()

    add_input_layer( model = classifier, shape = shape, filters = filters )     # Input layer

    # Convolution Blocks
    add_convolution_block( model = classifier, filters = ( filters *  2 ), kernel_size = 3 )
    add_convolution_block( model = classifier, filters = ( filters *  4 ), kernel_size = 3 )
    add_convolution_block( model = classifier, filters = ( filters *  8 ), kernel_size = 3 )
    add_convolution_block( model = classifier, filters = ( filters * 16 ), kernel_size = 3 )
    add_convolution_block( model = classifier, filters = ( filters * 32 ), kernel_size = 3 )

    add_fully_connected_layer( classifier )                                     # FCL
    add_dense_block( model = classifier, units = 128 )                 # Dense Blocks
    classifier.add( Dense( units = CLASSES_COUNT, activation = 'softmax' ) )    # Softmax Activation 
    compile_model( model = classifier )                                         # Optimizer

    return( classifier )

 Figure-15: CNN Model Build for Model-1
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The last figure shows the resulting summary of the model after it has been constructed.
 

Figure-16: Architecture Summary for Model-1 
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Module 2 - Cat Identifier
The last network is a very simple CNN model which will only take in input pixels 

relating to a given cat. Since the number of pixels is minimized, and the variance between cats 
needed to be identified is relatively large, this network only requires a couple simple layers to 
effectively and efficiently distinguish between the different cat classes. The following figure 
below provides the implementation for building the model. Three convolution blocks are 
followed by a flattening layer, and then two dense layers to arrive at the final classification 
categorization. This completes the main bulk of the software implementation for this SCDS. 

def build_model( input_shape = INPUT_SHAPE, filters = FILTER_COUNT ):

    classifier = Sequential()
    classifier.add( Conv2D( filters = filters * 1, kernel_size = 3, 
                            strides = 2, padding = 'same', input_shape = input_shape ) )

    classifier.add( Dropout( DROPOUT ) )

    classifier.add( Conv2D( filters = filters * 2, kernel_size = 3, padding = 'same' ) )
    classifier.add( LeakyReLU( alpha = 0.1 ) )

    classifier.add( Conv2D( filters = filters * 2, kernel_size = 3, padding = 'same' ) )
    classifier.add( LeakyReLU( alpha = 0.1 ) )

    classifier.add( BatchNormalization() )
    classifier.add( MaxPooling2D( pool_size = 2 ) )
    classifier.add( Dropout( DROPOUT ) )

    classifier.add( Conv2D( filters = filters * 4, kernel_size = 3, padding = 'same' ) )
    classifier.add( LeakyReLU( alpha = 0.1 ) )

    classifier.add( Conv2D( filters = filters * 4, kernel_size = 3, padding = 'same' ) )
    classifier.add( LeakyReLU( alpha = 0.1 ) )

    classifier.add( BatchNormalization() )
    classifier.add( MaxPooling2D( pool_size = 2 ) )
    classifier.add( Dropout( DROPOUT ) )

    # FCL
    classifier.add( Flatten() )

    classifier.add( Dense( units = 64 ) )
    classifier.add( LeakyReLU( alpha = 0.1 ) )

    classifier.add( Dense( units = 64 ) )
    classifier.add( LeakyReLU( alpha = 0.1 ) )

    classifier.add( BatchNormalization() )
    classifier.add( Dropout( DROPOUT * 2 ) )

    # Softmax Classifier
    classifier.add( Dense( units = 2 ) ) # Number of classes = 2
    classifier.add( Activation( 'softmax' ) )

    # Optimizer
    classifier.compile( optimizer = OPTIMIZER, loss = LOSSES, metrics = METRICS, run_eagerly = False )
    
    return( classifier )

 Figure-17: CNN Model Build for Model-2
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Physical Structue 
Here is an image of the working enviornment, where the rug is the region of interest for the 

camera. This is the cat door which the test subjects will be attempting to pass through. Notice the Jetson 
Nano is stationed at the bottom left corner near the door.

Figure-18: Working Prototype Enviornment 

The next peripheral to setup was a pwm driver to control the servo latch and the blinking LEDs. 
The first figure below on the rigth ([13]) is the adafruit pwm driver that we used to power the servo motor
and the LEDs. The figure to the right of that is the Jetson Nano pinout table that we used to find the I2C 
bus pins (power, ground, data, and clock) [14, 15, and 16]. After the pwm driver was connected to the 
Jetson Nano.

 

Figure-19: PWD Driver & Jetson Nano Pinouts
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The following figures below show the physical implementation of the pwm driver. 

Figure-20: PWM Driver Impmentation

The next peripheral to setup was the servo latch and the blinking LEDs, operated by the PWM 
driver. The implmentations are dislayed below, where the left image shows the front of the cat door, and 
the status-LEDs, and the right side shows the servo latch visable before mounting the cat door.

For the LEDs, the blue left-most light indicates that the system is on, and running. The yellow 
LED turns on if the system has found a cat within the field of view, and then the red LED will turn on if 
that cat is determined to be a cat not allowed through, or else the red LED will turn on to indicated that 
the cat is allowed through. If the cat is allowed through, the servo latch will rotate clockwise, where the 
arm is in a horizontal position, allowing for the cat door to swing open. Otherwise, the servo latch will 
rotate counter-clockwise, aligning the arm vertically as to block the cat door from swinging open.

Figure-21: LED Implmentation (RHS) & Servo Latch Impmentation (RHS)
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Test Subjects
Here are the two cats in question for this project. The cat on the left is named Remi (Cat A), and 

the cat on the right is named Lightning (Cat B).  Remi is the cat to be prevented from going through this 
cat door, while Lightning is the cat to be accepted.  

Figure-22: Test Subjects (Cats A & B)
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Testing

Module 1 - Cat Detector 
The following figures show the model accuracy and cross-entropy loss during training for 
model-1 on both the validation and training datasets.

 Figure-23 Training Accuracy and Cross Entropy for Model-1

Image classification results are provided below in from both the testing data.

Figure-24: Test Case Image 
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Module 2 - Cat Identifier 
The following figures show the model accuracy and cross-entropy loss during training for

model-2 on both the validation and training datasets. 

Figure-25: Training Accuracy and Cross Entropy for Model-2

Again, image classification results are provided below in from both the testing data.

Figure-26: Cat Identifier Test Case
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Video 1 Pipeline 
The first test video for the pipeline test is of Rem (Cat A) running through the field of 

view. As illustrated in the image below, the resulting frame classifications from model 1 are very
percise. Above each frame is it’s classification from model 1 (cat or no cat), follwed by the 
frame index, and then the prediction confidence level. 

Figure-27: Video 1 Test Case for Model 1 (Cat Detector)

The next image illustrates the predictions made from model 2, after the frames which 
have been determined as cat images have been passed down the pipeline from model 1. This 
time the frame classification is either ‘Remi’ or ‘Lightning’. The cat is correctly identified in each 
frame. 

Figure-28: Video 1 Test Case for Model 2 (Cat Identifier)

21



Video 2 Pipeline 
The second test video for the pipeline test is of Lightning (Cat B) running through the 

field of view. The image below illustrates the resulting frame classifications from model 1 are 
again very percise, correctly identifying almost all frames where Lightning enters the view. Once
the whole body of the cat is in the image, the predictions are 100% accurate.

Figure-29: Video 2 Test Case for Model 1 (Cat Detector)
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The next image illustrates the predictions made from model 2 for the second video, 
again with 100% accuracey.

Figure-30: Video 2 Test Case for Model 2 (Cat Identifier)
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Final Full System 
After assembling the peripheral devices, training the models, and developing the camera

pipeline, the final test is that of the full system from start to finish. Note that these test result 
images were taken from a camera other than the one used by the system, so that the images 
could display the cat as well as the status LEDs on the cat door in order to best represent the 
Smart Cat-Door System system. The first image shows the result of the default state, where the 
system is running (indicated by the blue LED being on) and there is no cat detected (indicated 
by the yellow LED being off). Although not visible, the latch is in the closed state, followed down 
being the door, leaving the cat door unlocked and able to swing open.

Figure-31: Full System Test Case for No Cat

The next set of images are the testing results for Remi (Cat-A). Here you can see that both a cat
has been detected (indicated by the yellow LED being on), and that it has been correctly 
identified as Remi (indicated by the red LED being on). At the point, the latch is in an upward 
position to lock the cat door and not allow Remi through.

   

Figure-32: Full System Test Case for Remi (Cat A)

The last set of images are the testing results for Lightning. Again, the system has indicated that 
a cat has been detected (yellow LED is on), and now it has correctly identified the cat as 
Lightning (indicated by the green LED being on).

Figure-33: Full System Test Case for Lightning (Cat B)
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