
Page 1

ECE 473: Embedded Systems - Final Project Report

CatNet - A Smart Cat Door System

Desmond Carter & Roderick Renwick

December 10, 2019
Fall 2019

Honor Code:

I have neither given nor received unauthorized assistance on this graded report.

X____________________Desmond_Carter_&_Roderick_Renwick_____________________

Page 2

Table of Contents

Table of Contents 2

Concept 3

Requirements 4

Design 5
Design: Camera Setup 6
Design: Convolutional Neural Network Setup 9
Design: Peripheral setup 11
Design: Physical Structure 13

Implementation 14
Implementation: Camera Setup 14
Implementation: Convolutional Neural Network Setup 19
Implementation: Peripheral setup 22
Implementation: Physical Structure 27
Implementation: Timing-Constraints 28
Implementation: Main 29

Testing 34

Documentation 36
Documentation: Data Collection 36
Documentation: Building Convolutional Neural Network 38
Documentation: Running Convolutional Neural Network 39

References 40
Camera Setup 40

Calibration Configuration 40
Perspective Transformation 40

Convolutional Neural Network Setup 40
Peripheral setup 40

Audio Circuit 40
Servo Motor Latch 41
Threading 41
Python language 41

Appendix 42
Python Libraries Installation Process 42

Page 3

Concept

This project aims to solve a problem with household animals that do not get along. Specifically,
the goal of this project is to create a system that will operate a cat door smart enough to let one type of cat
pass through, while being able to actuate a latch that will lock the cat door to prevent another type of cat
from access to a given room.

Imagine that there are two cats: one orange and the other black. These cats do not get along as the

orange cat likes to attack the black cat. This system will effectively recognize which cat is allowed to
enter a room that is safe from another cat which is aggressive and hostile to it. In this case, the black cat
will be allowed to enter a room, while the orange cat will be locked out of the room via the smart cat
door.

Figure-1: Cat Door Opened and Unlatched

Page 4

Figure-2: Cat Door Closed and Latched

Requirements

As for the functional requirements of this project, the aim is to have an embedded system make
real-time predictions as to whether or not there is a cat present that is not allowed to pass through the
cat-door, and then accentuate the latch accordingly to lock the cat out. While it is unrealistic to use real
animals for the demoing of this project, stuffed animals will do just fine.

On the hardware side, the necessary tools will be the Jetson Nano microcontroller that will
interface with a camera module and a servo-motor which will serve as the latch for the cat-door. For
image classification, we’ll be using the NVIDIA Jetson Nano Developer kit. For the purpose of
consistency, a testing environment will be constructed out of a wooden base and wooden wall to hold the
cat-door frame as well as mount the electronic equipment onto.

The necessary tools for this on the software side will consist of a convolutional neural network
which will be trained to recognize and predict the color of the cat. Upon real-time detection of a cat that is
deemed to not have access through the cat-door, the system will relay a command to the servo-motor to
accentuate the latch. The core libraries to facilitate this project will be the Open Computer Vision
(OpenCV) library and the TensorFlow library.

Timing constraints to consider for this project are the speed of a cat, the debouncing period of the

cat door, the image processing time of the network, and the actuation time of the latch. Some of these
constraints must be determined as the project develops. However, it we were to look at the edge cases for
the lower time bound (or minimum time period) in which the latch must be repositioned, there are
situations where one kat may be infinitely close to the other cat and be able to get in while the door is
opened, or where the actuation of the latch may happen before the cat door is in a stable state. On the
other hand, the edge cases for the upper time bound (or maximum time period) in which the latch must be
repositioned may ideally be the time period it takes for a cat to enter the field of view of the camera until
it reaches the door destination. However, the cat can most likely afford a waiting period. For these
reasons, we have determined the classification of this system to be a firm real-time system.

Page 5

Design

This section covers the overall design needed to move the initial conceptualization of the project
to the implementation phase. The initial diagram gives a bird’s eye view of the project as it lays out how
different abstraction layers interact with one another.

Figure-3: A bird’s eye view of the project

The initial setup section obscures some of the complexity necessary to design the project. An

excursion into the requisite details will help shine a light on the setup procedure.

Page 6

Design: Camera Setup
In order to capture an image and make it easy to classify by the neural network during the training

and model building phase, we need to simultaneously simplify it enough so as to not capture an
unnecessary amount of detail, remove any distortion of the image created during the capturing process,
and capture enough detail so that the neural network can distinguish the differences between objects being
observed. The first issue issue is resolved by perspective transformation, while the other two concerns are
handled by camera calibration. Given its ease of use, ubiquitous usage in industry, and the amount of
documentation available, we’ve settled on using solutions for these issues provided by OpenCV. One of
the constraints of OpenCV is that it can only calibrate a camera using three sorts of objects: black and
white chessboards, symmetrical circle patterns, and asymmetrical circle patterns. Through our calibration
and our transformation procedure, we’ve employed the chessboard to configure our images.

Figure-4: A sketch of a chessboard that will be used

Camera calibration deals with correcting any bias stemming from the camera’s lens. It is

important to remember that the camera is being used to capture light being reflected from an object
through a lens that has a particular shape. This step is used to remap the dimensions of the world to pixels.
The two types of distortion that stem from the curvature of a camera’s lens are radial and tangential
distortion. Radial distortion occurs because light extends (bends) at the points in which the lens curves.
This can lead to two different types of radial distortion, depending on the focal length achieved: the barrel
effect, which stems from a small focal length, and the pincushion effect, which arises when a large focal
length is present.[3]

Page 7

Figure-5: Radial Distortion Example of a Camera Lens

Unlike the camera calibration step, perspective transformation seeks to correct things being

captured from the world, rather than correcting for inherent aspects of the camera being used. That is, it
seeks to correct for the different distances that an observed objects’ sides are from the camera lens.[5] An
ideal situation is one where this isn’t a problem, but this ideal situation would require the camera to be
directly above the observed object. In most real world scenarios, this is not possible and so this sort of
transformation is necessary to ensure that an undistorted image is captured. Another way one could
describe this transformation is as a “flattening” of the world in order to achieve the idealized “from
above” perspective.[6]

The structure of the camera initialization process is laid out in the following module (figure-6).

This module will be responsible for performing two functions on a given input image (camera frame): a
perspective transformation, and distortion correction. To perform those calibration functions, there are
three input parameters that are required. One of these parameters is the homography matrix (mapping
3D-object points to a 2D-image plane) required for the perspective transformation. The other two
parameters are the distortion matrix, and the intrinsic camera values matrix, which are required for the
distortion correction in order to calibrate the camera correctly.

Page 8

Figure-6: Camera Initialization Process

The next figure (figure-7) shows the design for the data collection submodule. The first step is to
initialize the camera via the homography, distortion, and camera intrinsic values matrices. After that, we
must pass in the region of interest (ROI) parameters to filter out irrelevant pixels in a given camera frame.
We may then stream a live camera feed to collect data from. To do so, we will use each frame as an input
that undergoes the perspective transform, distortion correction, and ROI filtering to get the apropos output
image that we wish to store.

Figure-7: Data Collection Process

Page 9

Design: Convolutional Neural Network Setup

For image object classification purposes, a convolutional neural network (CNN) makes for a very
powerful tool in terms of accuracy and performance [10]. The value of a CNN is in the ability to learn
features of an object (e.g., curvature) without respect to the object’s position, or rotation within the image.
By applying a filter (or kernal) to an image, and convolving the filter with the image, these key features
are able to be extracted and preserved. These filters are also a means of dimensionality reduction
depending on the stride of a given filter, unless “zero-padding” is used to maintain the original size. After
multiple layers of convolution and pooling are applied, a fully connected layer is the final vectorized
feature map, with every element uniquely corresponding to an object classification [10]. For these
examples, the fully connected layer is a 3x1 vector where the final classifications are a white cat, brown
cat, and no cat. The following figures go over the construction of the CNN model.

The following figure shows the flowchart process of building the CNN [8]. Specifically, there are

two datasets: training, and testing. Both datasets are composed of images that may be classified into one
of three categories: white cat, brown cat, or no cat. The training images need to go through “one-hot”
encoding which is just to label the training images with their respective classification (done by a human).
After the datasets are ready, they are converted into NumPy arrays which may then be pickled to store for
later usage. From there, the pickled datasets are pulled in from the file that is ready to construct the
network, and it then slits and reshapes the data (in the form of NumPy arrays) to the specified values
wanted for training purposes. Lastly, the hidden layers of the network (composed of convolutional layers,
dropout layers, and pooling layers) must be determined as well as the network’s parameters (i.e., the batch
size, epoch count, learning rate, etc.). Once all of this has been determined, the network is ready to train.
Finally, when the training is complete, the model is saved, as well as the parameters used to structure the
CNN so that we may reconstruct it later when using the model to make inferences.

Figure-8: Building the CNN Model

Page 10

The next figure is a visualization of the CNN structure [9]. It starts with the input layer, which has
a depth of three -- one for each color channel from an RGB input image. Then there are a multiple of
convolution and pooling layers that take place inside the hidden layers section of the diagram. Finally, the
features are then mapped to the fully connected layer which has three classifications for image objects: a
brown cat, white cat, and no cat.

Figure-9: CNN Model Visualization

Page 11

Design: Peripheral setup

For the peripherals, there are three separate functionalities: the servo motor (i.e., actuating latch),
the audio speaker, and the green and red LED lights. Each of these functional areas have their own
threads. To sleep / wake-up individual threads, there are two conditional boolean arguments passed into
each thread: a global “termination_criteria” boolean that will tell all threads to terminate when set, and
then a local boolean unique to each thread that will wake it up as needed once it is set.

Every thread uses a third boolean argument as an “event” setter. This event boolean will

determine which one of the two functions should be called once the thread is ready to run. The event
boolean for the latch thread will call the “actuate open” function if set high, or else it will call the “actuate
close” function when set low. Similarly, the event boolean for the audio thread will call the “access
granted” function is set high, or else it will call the “access denied” function when set low. Likewise, the
event boolean for the LED thread will call the “green light” function if set high, or else it will call the “red
light” function when set low.

The first figure below is a flowchart for calling the threads, along with their event booleans, and

respective functions.

Figure-10: Threading Event Functions Flowchart

The next figure (figure-11) is a moore state diagram to show the appropriate times to wake-up
each thread and call functions from it. There are three states to be considered: the “no cat” state (default),
the “brown cat” state (where the brown cat is detected), and the “white cat” state (where the white cat is
detected).

As shown in the legend, three bits (b0, b1, and b2) are used to tell whether there is an event

required for a state change. The first bit (b0) indicates a latch event, the second bit (b1) indicates an audio
event, and the third bit (b2) indicates an LED event. If any bit is zero above the arrows traveling between
state changes, it means that there is no event trigger required when switching states and thus, there is no
need to wake-up that given thread. Conversely, if any bit is set to one above the arrows traveling between
state changes, it means that the thread’s local boolean is set, and requires that thread to wake-up and run a
given function, specified by the thread’s event boolean.

Page 12

In short, a “1” indicates that the thread needs to toggle function calls. For example, when

switching between the “brown cat” state to the “white cat” state, the “111” indicates that all three threads
require waking up to toggle the current states of the peripherals they control. So this switch requires that
the latch state changes from opened to closed, the audio state changes from the “access granted” clip to
the “access denied” clip, and the green LED state changes to off while the red LED state changes to on.

Figure-11: Moore State Change Diagram

Page 13

Design: Physical Structure

The following figure shows a basic design for the physical structure that will be used to

implement the cat door simulation. The drawing is proportionally scaled, and shows the key required

modules for the cat door: the door and hinge, the latch actuated by a servo motor, the camera and display,

and the dashed line indicates the placement of the processing hardware on the backside.

Figure-12: Physical Structure

Page 14

Implementation

Implementation: Camera Setup

In order to implement solutions to the two problems addressed in the Camera Setup subsection of
the Design section, we used functions from the OpenCV library. [2, 5, and 6] Below is the actual
chessboard that we used to correct the issues mentioned in the camera calibration subsection above.

Figure-13: Physical Calibration Chessboard

The next flowchart (figure-14) describes the actual program that we used to resolve the

calibration of the camera. We first collected each calibration image into an array and then reclassified
them using the glob function from the glob library. We then used a for loop to iterate through the glob
array of images until the last image was reached. Within the for loop, we converted each individual image
to the required OpenCV format, converted that OpenCV reformatted image to grayscale, used the
findChessboardCorners function from the OpenCV library to find the corners of each image, and then
stored those corner points (2 dimensional points) in both the camera matrix and distortion matrix. If no
corners could be found, the program would then remove the image from the array and not send it through
the process.

Page 15

Figure-14: Camera Calibration Flowchart

The following code excerpts showcase the implementation of the flowchart shown above. The

output images listed in the 3 x 3 grid show the sorts of images required in order to calibrate the camera.

Figure-15: Variable Declarations for Camera Calibration Implementation

Page 16

Figure-16: Implementation for Finding 3D-Object and 2D-Image Points (chessboard corners)

Figure-17: Function-Call to Get Distortion (dist) and Intrinsic Values (mtx) Matrices

Here is a sampling of the images compiled for the camera calibration module (figure-18).

Figures-18: Data Collection of Images Used for Camera Calibration

Page 17

With respect to solving the issues in the perspective transformation section, OpenCV offers a
built-in system for “flattening” the image observed by the camera. This “flattening” is achieved via the
homography matrix, which is derived from the relationship between a warped image of the Chessboard
and the target image of the Chessboard.[6] The homography matrix maps the corners of the warped image
to the corners of the target image. As stated earlier, this is to reduce the amount of details that the neural
network will have to observe while it works to pick out identifying features of an observed object.

Figure-20: Flowchart Implementation for Homography Matrix

The next code (figure-21) displays the usage of the OpenCV method “findChessboardCorners”.
This finds the chessboard vertices from both the warped and unwarped images. The findHomography
method is then used to find the homography matrix. With this, we’re finally ready to collect the necessary
data to build the convolutional neural network.

Figure-21: Homography Estimation Matrix from 3D-Object and 2D-Image points

Page 18

Here is a sampling of the images compiled from the perspective transform module (figure-22).

Figure-22: Perspective Transformation Implementation (warped images are on the right, unwarped images are on the left)

Page 19

Implementation: Convolutional Neural Network Setup

As the design stage for the CNN setup explained, the image datasets are slip into two divisions:
training images and testing images; and there are three classification sets within each division: no cat,
brown cat, and white cat. The figure below (figure-23) provides example images of those three
classification sets, with the “white cat” classification image on the left, the “brown cat” classification
image is on the right, and the “no cat” classification image is in the middle. Note that all three images
have a blacked out region -- this is due to the region of interest (ROI) filter, as we constrained the ROI to
be within the field of view (FOV) of the wooden running board (i.e., cropped the images fed into the
camera pipeline). This is to ensure consistency across images and when validating the network, as the
image backgrounds are homogeneous throughout the training and testing images, regardless of the testing
environment location.

Figure-23: Image Classification Examples -- White Cat, No Cat, Brown Cat (Respectively)

The next figure below (figure-24) shows the program implementation for the global variables and
CNN parameters, such as the batch size, number of epochs, and the learning rate of the model [10]. There
are also specified paths for saving the model and it’s parameters after it has been constructed and trained.

Figure-24: Global Variable Declarations for CNN Model Construction

Page 20

After the datasets of the training and testing images have been pickled and stored (in the form of
NumPy arrays), we need to load these datasets as arrays (see implementation shown below in figure-25).

Figure-25: Loading Training and Testing Datasets (via NumPy Arrays)

Before we may train the network we need to split the “train_data” dataset (composed of 2400
images) up into train and test sets for the network to perform validation checks during the training.
Generally speaking, it is safe to assume that you should set aside 20% of your training data for testing
purposes when training the network -- thus, in figure-26 you can see that we split the datasets and set
aside 480 images for testing purposes during training. This means that while training, the CNN model has
1920 images to test on, while using 480 images to test it’s accuracy during each epoch. This also will
produce two different accuracy measurements while training: one “accuracy” score for the training
images (images that the network trains on and has “seen” before), and one “validation” score for the
testing images (using images which the network has not yet “seen”, to test itself during each epoch).

Figure-26: Splitting-Up Testing and Training Datasets

The final figure for this section (figure-27) shows the skeletal structure of the CNN model, as it
has the input layer, five convolutional layers, five pooling layers, a dropout layer, and two fully connected
layers that provide the final image classification [7, and 10]. These input parameters determine the
number of weights and how each layer interacts with each other. Each of the three object classifications
has a set of features within the fully connected layers that are scored by an activation function (in the first
case, the “ReLu” activation function), and then a final logistic regression activation function (in this case,
the “softmax” activation function) is used to make an inference about an input image. This “inference” is
a weighted score in the form of a percentage that describes the “fit” of an image with respect to one of the
object classifications, and this percentage is effectively what produces a “prediction” that classifies the
image.

Page 21

Figure-27: CNN Model Structure

Page 22

Implementation: Peripheral setup

The first peripheral to setup was audio. The following figures below (figures 28, & 29) show a
speaker synthesizer circuit proposed from a circuitbasics website that takes an audio jack input, a
potentiometer for volume control, and an operational amplifier to output the sound to a physical speaker.

Figure-28: Audio Speaker Schematic
(from circuitbasics.com [11])

Figure-29: Audio Speaker Implementation
(from circuitbasics.com [11])

We replicated this circuit schematic for this project (shown in figures 30, & 31) in order to play

our “access denied” and “access granted” sound clips in real-time from the cat door structure [12].

Figure-30: Audio Circuit Implementation Figure-31: Speaker Implementation

Page 23

The next peripheral to setup was the pwm driver to control the servo latch and the blinking LEDs.
The first figure below on the left (figure-32) is the adafruit pwm driver that we used to power the servo
motor and the LEDs. The figure to the right of that (figure-33) is the Jetson Nano pinout table that we
used to find the I2C bus pins (power, ground, data, and clock) [14, 15, and 16]. After the pwm driver was
connected to the Jetson Nano, the next steps were to configure the servo motor and LEDs to attach to the
pwm driver.

Figure-32: PWM Driver Layout
(from adafruit.com [13])

Figure-33: Jetson Nano Pinout
(from element14.com [16])

The following figures below (figures 34, & 35) show the physical implementation of the pwm

driver and servo motor latch on the cat door structure itself.

Figure-34: PWM Driver Implementation Figure-35: Servo Latch Implementation

Page 24

Similar to the servo motor needing power, ground, and pwm input signals controlled via I2C, we

setup the green and red LEDs from the pwm as well, however they only needed ground and pwm input
signals as the pwm duty cycle determines the illumination of them and whether they appear on or off. The
implementation of these LEDs are visible in the next two figures (figures 36, & 37) [14].

Figure-36: Green LED Implementation Figure-37: Red LED Implementation

The code for all three of these peripheral devices is laid out below. The first figure of code

(figure-38) shows the I2C bus configuration for the pwm driver. Here we setup three independent
channels: one for the motor latch, and two for the red and green LEDs [15].

Figure-38: I2C Bus Configuration for PWM Driver

The next section of code (figure-39) on the following page lays out the audio implementation via

threading. You can see that the function takes in three thread events - one of which is the global
termination event passed along to all of the running threads [17, 18, and 19]. The sound event is the
trigger to wake-up and run the thread, upon which it will play either the “access granted” or “access
denied” audio clip [12]. To determine which audio clip is wanted, the audio boolean event is passed
along, where it will play “access granted” if it is set high, or else it will play “access denied” if the
boolean is false.

Page 25

Figure-39: Audio Thread Function-Call

Similarly, the latch thread (figure-40) is setup to trigger on the latch event being set, determine
the function-call from the latch boolean event, and terminate when the global termination event is set.
However, since the latch requires the pwm, the latch channel must have it’s duty cycle set accordingly.
The pulse width of the pulse period must gradually increase from the starting value to its ending value to
mirror actuation as the latch rotates accordingly. For example, an increase from 5 milliseconds to 9
milliseconds corresponds to the physical latch rotating from the horizontal (open/unlocked) position to the
vertical (closed/locked) position and vice-versa.

Figure-40: Latch Thread Function-Call

Page 26

The final section of code for the peripheral implementations (figure-41) shows the same structure
as the threading function for the latch, but is in charge of the LEDs functionality. As the pwm driver
controls these LED channels, a duty cycle of 100% (or 0xffff) gives the channel a continuous pulse which
effectively leaves the LED in the “on” state. Conversely, having the duty cycle of 0% (or 0x0000) gives
the channel zero pulse which effectively leaves the LED in the “off” state.

Figure-41: LED Thread Function-Call

Page 27

Implementation: Physical Structure

Following the physical setup of the peripherals shown above, the physical structure
implementation is shown below for the car door (figure 42, & 43). The mounted hinge on top of the door
frame that holds up the plexiglass plates (used as the door itself) has a tension screw in the middle to help
determine the friction to resist rotational movement. However, there was initial concern with trying to
position the door perfectly vertical when it was at rest. Below the center of the door frame is the latch
mounted to actuate it’s arm in place of the opening door to put the system in a locked state.

Figure-42: Cat Door - Frontside Figure-43: Cat Door - Backside

It should be noted that the debounce period of the door to rest in a stable position after being

swung open was rather significant. In order to combat this issue, magnets were cemented into the
plexiglass plates as well as the sides of the wooden structure. These magnets effectively held the door
closed in the intended position and helped dampen the debounce time needed for the door to rest in a
stable state. This implementation worked out very well.

Page 28

Implementation: Timing-Constraints

Upon implementation of the physical structure, it became apparent that the main factor that would
dictate the timing constraints was the debouncing period of the door. We determined that the latch
actuation time needed to be slower than the door debouncing time period but quicker than the time period
it kats for the cat to enter the image frame until the cat reaches the door frame. This time constraint is
detailed in the figure below (figure-44).

Figure-44: Theoretical Time Constraint Diagram

This theoretical time constraint is illustrated in the following example (figure-45).

Figure-45: Time Constraint Example

Page 29

Implementation: Main

In order to execute this main program, we first need to specify a few global variables (listed in
figure-46) which are key to the application. Firstly, there are the data paths to the pickled data files. Then
there is the LCD screen width and height so that we may properly configure the display image window.
Also, we must locate and load in the profiles of each of the three states that this system will classify itself
as being in throughout the program, and then we store these profiles in a vector called “kat_profile_arr”.
After all of that is done, we are ready to declare our threading events to control the peripherals [18].

Figure-46: Global Variable Declarations in Main Program

Page 30

Opening the pickled files from the data paths is done in the following figure (figure-47). There
you can see how we loaded in the CNN model parameters, and camera the initialization matrices (i.e., the
distortion, intrinsic values, and homography matrices).

Figure-47: Global Variable Declarations from Pickled Data in Main Program

Another key function for our program is defined on the next page (figure-48). This is where we
implement the switching functionality between our peripheral threads. As you can see, not every state
change requires waking up every thread and looking for new function calls. By implementing the moore
state diagram to determine which threads need awakening after different predictions, we can minimize the
time spent context-switching between threads, and ensure that our program runs at a high efficiency rate.

Page 31

Figure-48: Thread Switching and Interfacing in Main Program

Page 32

The next key function of our program is actually the main function (starting at figure-49). Here is
where we begin the camera pipeline initialization. After we read in the CNN model and its parameters, we
start spinning off the peripheral threads to be ready when called upon. After that, we are able to construct
the video feed which displays a running loop of the camera frames captured via OpenCV.

Figure-49: Camera and Thread Initializations in Main Program

The following figure (figure-50) shows the display window configuration for the LCD screen.

Figure-50: Display Window Initialization in Main Program

Page 33

Finally for the real “work-horse” of the program, we can jump to the while loop (as shown in

figure-51). Here we continuously read in a new image frame from the live camera. Once that frame is

formatted correctly, we can then display it as well as feed it into the CNN model to make a prediction

from. From speed and image processing concerns, we only act when two consecutive predictions are the

same as this gives a more robust and stable output predictor while running the detection in real-time.

Figure-51: Camera Pipeline Loop in Main Program

The last figure in the main program shows the termination functions. For OpenCV we must first

close the current window display, release the camera structure, and then we can call a termination

program to clean up the running threads in order to exit the program in a controlled manner.

Figure-52: Termination Function Calls in Main Program

Page 34

Testing

Upon final testing, we were able to verify that the network was trained as intended and produced
the results we were looking for. Thus, the application was successfully implemented and we were pleased
with the final product. The first figure below (figure-53) shows a screenshot of the CNN as it finished
training.

As you can see, the “accuracy” score (from datasets during training that the network had
previously seen before) towards the end was excellent as it approached 100%. Then there is the “val_ac”
score (validation accuracy), which hovered around a 98.5% success rate for the network training on data
that was previously “unseen” or new to it. This shows a successfully trained CNN model.

Figure-53: CNN Training Results

Following the trained CNN, the physical testing was done by running the model, and showing
different objects in the camera’s field of view.

Page 35

As you can see in the figures on the next page (figures 54, 55, & 56), the CNN model was able to
precisely predict the proper state of the system with respect to the input frame of the camera. On the left
hand side, the brown cat was correctly identified on the LCD screen, the green light LED has been
triggered, and the latch is down (in the open state). On the right hand side you can see the white cat has
been correctly identified on the LCD screen, the red light LED has been triggered, and the latch passed
the door is vertical (in the closed state). As well, in the middle you can see that when neither cat is in on
the runway, it correctly displays no cat as it’s prediction.

Figure-54: Brown Cat Prediction Figure-55: No Cat Prediction Figure-56: White Cat Prediction

The last two figures (figure 57, & 58) are close up images of the prediction profiles for both cats.

Figure-57: Brown Cat Profile Figure-58: White Cat Profile

Page 36

Documentation

Each of the sections below are organized in the order in which they are to be executed in the
terminal. The documentation presupposes that the reader has already set up the peripherals mentioned in
the implementation section.

Documentation: Data Collection

After obtaining the Camera matrix and distortion matrix, one can then go about collecting training
data that will be used to build the convolutional neural network model. In order to simplify the process
and create a clear training set, the possible scenarios that were trained on are no cats present (kat 0), white
cat present (kat 1), and brown cat present (kat 2). The first step is to run the following code in order to
capture images of the no cat (kat 0) scenario:

python collect_training_data_kat0.py

This application will start the camera and provide the user with a display that shows what the
camera is observing on the runway to the cat door. The user will then be able to use the spacebar on the
keyboard in order to collect images for the training set. It is important for the user to collect to not place
any images of the cats in this training set as it will lead to issues with training the neural network. The
user will also have to collect images using this procedure under a multitude of different lighting scenarios.
This will ensure that the neural network does not misidentify a shadow on a blank scenario as a “cat
present” scenario.

After collecting a large number of images of the blank runway under different lighting scenarios,
the user can then press “ESC” on the keyboard to leave the first program and run the next command:

python collect_training_data_kat1.py

This will start up the next application that will be used to collect images of the white cat. Similar
to the process above, the user will again use the spacebar to collect images as well as have the ability to
see what the camera is collecting via a display. The user will collect the same number of images of the
white cat as she did in the blank runway scenario. The one difference between this setup and the one
above is that the user in this setup must place the cat on the runway in many different positions in order to
ensure that the neural network will have “observed” different parts of the cat in question. The user will
again press “ESC” in order to exit the program.

In order to collect images of the brown cat, the user will nearly follow the exact same procedure
that was used to collect data on the white cat. The only difference will come in the command that the user
will use to do this:

python collect_training_data_kat2.py

Page 37

The rationale behind this duplication is that it ensures that the data collected on the three scenarios will
remain clean as it reduces the possibilities of human error during the collection procedure.

Another program that may be necessary is the following:

python rename_kat_images.py

This program will only really be necessary if the user decides later on that she did not initially collect
enough images to properly build the neural network. This program simply renames every image that was
collected during the collection procedure mentioned above. There is one proviso that one must be aware
of when using this program. If the user does not modify the zfill argument shown below before running
the renaming program, some of the data that was collected may be overwritten and lost. The suggested
workflow for the user to implement would be one where the user changes the zfill before running any of
the data collection programs listed above, running the data collection programs, and then rerunning the
naming program after changing the zfill argument to another number entirely.

Figure-59: Renaming image files warning

Page 38

Documentation: Building Convolutional Neural Network

After collecting all of the requisite image data in the preceding section, the user can now move on
to the process of building the neural network model. In order to successfully complete this portion of the
project, the user must make the data easier to process for the neural network, separate the data into
training and testing sets, train a network based around the aforementioned sets, and validate that the
neural network is able to make predictions accurately. All of these things will be completed by three
commands. The first of these commands tackles the step before the data processing and data set splitting:

python copy_kat_images.py

This program copies all of the images and places one copy of the data into a testing directory and

the other in a training directory. The two sets of data are then processed by the following command:

python create_datasets.py

This program does two things: it relabels the training data and resizes both sets of data. The data in the
training directory is labeled with one-hot encoding in order to ensure that the neural network does not use
the original image labels during its training phase.

 The last step of this section is to actually create the convolutional neural network. The command
that will do this for the user is:

python create_cnn_model.py

This program takes the training dataset created with the last two commands and runs it the images
through a collection of processing layers that attempt to identify an image based on features that are
present in it. This process is implemented by using the TensorFlow library mentioned in the earlier
sections of this document. Based on the features of an image it observes, it tries to assign the correct label
to the image. It does this by assigning weights to the connections between features and an image’s label.
During this process, the neural network’s correct connections are identified and the weights that led to this
correct choice is then saved as a part of the neural network model. These weights are what the neural
network in the following section will use in order to identify the cats.

Page 39

Documentation: Running Convolutional Neural Network

After the last section’s final command, the user is now in possession of a convolutional neural
network model, which is just the weights that provided the neural network with the correct predictions.
The user will then run the following command to access those weights and use them in realtime to
identify the cat when it appears in front of the camera:

python cnn_camera_pipeline.py

This command loads the model mentioned above, starts the camera, runs a display that shows
what the camera is observing, and builds a neural network using only the weights from the model. This
command also starts the threads needed in order for the peripherals mentioned in the implementation
section. The user can now observe the neural network correctly identifying the cat and either allowing or
disallowing access to the other side of the cat door, depending on what cat has presented itself in front of
the camera.

Page 40

References

Camera Setup

Calibration Configuration

1. Beauchemin, S. S., & Bajcsy, R. (2001). Modelling and Removing Radial and Tangential Distortions in Spherical
Lenses. Multi-Image Analysis Lecture Notes in Computer Science, 1–21. doi: 10.1007/3-540-45134-x_1

2. Camera calibration With OpenCV. (n.d.). Retrieved from
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html.

3. Drap, P., & Lefèvre, J. (2016). An Exact Formula for Calculating Inverse Radial Lens Distortions. Sensors, 16(6), 807.
doi: 10.3390/s16060807

4. Heikkila, J., & Silven, O. (1997). A four-step camera calibration procedure with implicit image correction. Proceedings
of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. doi: 10.1109/cvpr.1997.609468

Perspective Transformation

5. Canu, S. (2019, September 13). Perspective transformation – OpenCV 3.4 with python 3 Tutorial 13. Retrieved from
https://pysource.com/2018/02/14/perspective-transformation-opencv-3-4-with-python-3-tutorial-13/.

6. Rosebrock, A. (2018, August 2). 4 Point OpenCV getPerspective Transform Example. Retrieved from
https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/.

Convolutional Neural Network Setup

7. Tflearn. (2018, July 27). tflearn/tflearn. Retrieved from https://github.com/tflearn/tflearn/tree/master/examples.
8. Damien, A. (n.d.). Deep Neural Network Model. Retrieved from http://tflearn.org/models/dnn/.
9. Lenail, A. (n.d.). NN-SVG: Publication-ready NN-architecture schematics. Retrieved from

http://alexlenail.me/NN-SVG/LeNet.html.
10. Mishra, P. (2019, July 20). Why are Convolutional Neural Networks good for image classification? Retrieved from

https://medium.com/datadriveninvestor/why-are-convolutional-neural-networks-good-for-image-classification-146ec6e
865e8.

Peripheral setup

Audio Circuit

11. Build a Great Sounding Audio Amplifier (with Bass Boost) from the LM386. (2018, June 21). Retrieved from
http://www.circuitbasics.com/build-a-great-sounding-audio-amplifier-with-bass-boost-from-the-lm386/.

12. Use tone() with Arduino for an Easy Way to Make Noise. (2018, October 31). Retrieved from
https://www.programmingelectronics.com/an-easy-way-to-make-noise-with-arduino-using-tone/.

https://pysource.com/2018/02/14/perspective-transformation-opencv-3-4-with-python-3-tutorial-13/
http://tflearn.org/models/dnn/
http://alexlenail.me/NN-SVG/LeNet.html

Page 41

Servo Motor Latch

13. Earl, B. (n.d.). Adafruit PCA9685 16-Channel Servo Driver. Retrieved from
https://learn.adafruit.com/16-channel-pwm-servo-driver/hooking-it-up.

14. Warren, S., & Tan, A. (2019, October 30). NVIDIA/jetson-gpio. Retrieved from
https://github.com/NVIDIA/jetson-gpio.

15. Jetson Nano - Using I2C. (2019, September 29). Retrieved from
https://www.jetsonhacks.com/2019/07/22/jetson-nano-using-i2c/.

16. Element14: NVIDIA Jetson Nano Developer Kit Pinout and Diagrams. (2019, May 21). Retrieved from
https://www.element14.com/community/community/designcenter/single-board-computers/blog/2019/05/21/nvidia-jetso
n-nano-developer-kit-pinout-and-diagrams.

Threading

17. Chaturvedi, S. (n.d.). Let's Synchronize Threads in Python. Retrieved from
https://hackernoon.com/synchronization-primitives-in-python-564f89fee732.

18. Python Library Reference: Event Objects. (n.d.). Retrieved from https://docs.python.org/2.0/lib/event-objects.html.
19. threading - Thread-based parallelism. (n.d.). Retrieved from https://docs.python.org/3/library/threading.html.

Python language

20. Van Rossum, G., & Drake Jr, F. L. (1995). Python tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The
Netherlands.

https://www.jetsonhacks.com/2019/07/22/jetson-nano-using-i2c/

Page 42

Appendix

Python Libraries Installation Process

In the main directory of the project, there is a file named “setup_nano.py”. This file will install all the non-standard
libraries required to run the project.

Figure-60: Bash Script to Install Required Libraries

In order to run this file, you’ll have to use the following commands:

Chmod +x setup_nano.sh

./setup_nano.sh

